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...
Who am 1?

o Assistant Professor in Climate and Extremes Data Science.
o Department of Atmospheric and Oceanic Science.

= University of Maryland Institute for Advanced Computer Studies (UMIACS).




Who am 1?

e Previously, served as a Broadcast Meteorologist on national (USA) news.

o Worked during the years 2010 through 2016.

= Covered extreme events like tropical cyclones, wildfires, heat waves, and

blizzards.
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As a broadcast meteorologist,

it was that | put extreme events

into context for the public.




How s this?

Can this happen again?

s this our new normal?




Regardless of your career stage or path, you will likely

need to be able to discuss climate change and extremes.




Let’s talk about the Earth system and DATA...




ATMOSPHERE OCEAN
Global water cycle Modes of variability
Extreme weather Coastal processes and waves

Clouds and convection Ocean currents and eddies

Aerosols and Salinity and
atmospheric chemistry biogeochemistry
Radiative transfer Mixed layer processes
Turbulence and Deep ocean circulation
surface exchanges Sea ice
Human interactions with Melt channels and
land, water, and energy ice shelves
Plant processes \ iy : A Ice sheets and glaciers
Vegetation dynamics T : : N o Snowpack
Terrestrial biogeochemistry P B " i Lake and river ice
Soil hydrology A
LAND CRYOSPHERE

Earth system models include many interdependent components and processes to help us understand
our planet. Image courtesy of Paul Ullrich, University of California, Davis
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Without Machine Learning

(=]

VERY SPECIFIC
INSTRUCTIONS

With Machine Learning
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Figure from Interpretable Machine Learning (Molnar, 2019).

Molnar, C. (2019). Interpretable Machine Learning. A Guide for Making Black Box Models Explainable.

https://christophm.github.io/interpretable-ml-book/.




NeurlPS Contference Papers, 1987-2020

Total accepted papers by year
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“Traditional” numerical weather prediction / climate modeling

Input Run Model Output
Observations or Parameterizations Predictions with
Representation of High Performance Certain Lead Time
the Initial State Computing Future Projections

Initial
State

CESM Greenland Pole Grid.

Molina, M. J., T. A. O'Brien, G. Anderson, M. Ashfaq, K. E. Bennett, W. D. Collins, K. Dagon, J. M. Restrepo, and P. A. Ullrich (2023). A Review of Recent and Emerging
Machine Learning Applications for Climate Variability and Weather Phenomena. Atrtificial Intelligence for the Earth Systems.




ML-based numerical weather prediction / climate modeling

Input
Observations or
Representation of
the Initial State

Run Model

Computing

Output
Predictions with
Certain Lead Time
Future Projections

Pathak, J., et al., 2022. Fourcastnet: A global data-driven
high-resolution weather model using adaptive fourier

neural operators. arXiv:2202.11214.

FourCastNet:

134.75 1160 9725 785 °W
Truth:

o
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hell -

134.75 116.0 97.25 785 °W

Molina, M. J., T. A. O'Brien, G. Anderson, M. Ashfaq, K. E. Bennett, W. D. Collins, K. Dagon, J. M. Restrepo, and P. A. Ullrich (2023). A Review of Recent and Emerging
Machine Learning Applications for Climate Variability and Weather Phenomena. Atrtificial Intelligence for the Earth Systems.




a) WR1: West Coast High (30% of total) b) WR2: Pacific Trough (27% of total)

Strongly Rotating Molina, M. J., et al.
(UH =75 m2s2) (2023). Subseasonal
Representation and
Predictability of
North American
Weather Regimes
using Cluster
Analysis. Al for the
Earth Systems.

& ' Non-strongly Rotating
G4 (UH<75m2s2)

Molina, M.J., Gagne, D.J., Prein, A.F. (2021). A benchmark to test
generalization capabilities of deep learning methods to classify severe
convective storms in a changing climate. Earth and Space Science. S —

CESM 500-hPa Geopotential Height Anomaly (meters)

D Existing MPA

Proposed MPA o5 S SOM UL e compostes
ggcmmp.aming Dagon, K., Truesdale, J. E., Biard, J. C., Kunkel, K. E., Meehl, G. A. and
Rl : Molina, M. J. (2022). Machine learning-based detection of weather fronts
and associated extreme precipitation. Journal of Geophysical Research:
Atmospheres.

None

Occluded

Stationary

Warm

Cold

DuVivier, A. K., M. J. Molina, et al. (2023). iDrojecs’ETE'S'mﬁ%%f Winter Polynyas and Their
Biophysical Impacts in the Ross Sea Antarctica. Climate Dynamics.
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The phys

Understanding physics behinad

the statistics of extremes.
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Hydrostatic Equation Top of the atmosphere

|
cadn,  — 2 25cmx2.5cm

©The COMET Program

Pressure at sea level is 1013 hPa =1 atm.
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https://creativecommons.org/licenses/by-nc-sa/4.0/deed.ml
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Photo by R. Pitter
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Image from

Forster, P., Ramaswamy, V., Artaxo, P.,
Berntsen, T., Betts, R., Fahey, D.W.,
Haywood, J., Lean, J., Lowe, D.C., Myhre,
G. and Nganga, J., 2007. Changes in
atmospheric constituents and in radiative
forcing. Climate Change 2007: The
Physical Science Basis. Contribution of
Working Group | to the 4th Assessment
Report of the Intergovernmental Panel
on Climate Change.




Changes in the Atmosphere: Changes in the
Composition, Circulation Hydrological Cycle
Changes in
Solar Inputs
Clouds
1 Atmosphere 77
Nl! oz- Ar, & ’ l £ /I £ / ' : C h .
H,0,CO, CH, N,0, 0, efc,  'olcanicActiity W danges Iin one

Atmosphere-Biosphere
Interaction

component of the

Terrestrial
Radiation 4man Influences

! = itn, : ; 1 phere
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T B Land Surface
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Aerosols ,
Atmosphere-
lce Precipitation
Interaction Evaporation (

Heat  Wind
Exchange Stress

Earth system can

Sea lcg__
Hydrosphere:
Ocean

drive changes in

Ice-Ocean Coupli . Changes in the Cryosphere:
B der;s h&':e, t Snow, Frozen Ground, Sea Ice, Ice Sheets, Glaciers
Changes in the Ocean: Changes infon tﬂe Land Surface:
Circulation, Sea Level, Biogeochemistry Orography, Land Use, Vegetation, Ecosystems anot h er

Image from

Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor,
M. and Miller, H., 2007. IPCC fourth assessment report (AR4). Climate
change, 374.
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“As air warms, its

(
S

capacity to hold water

0.8
o

increases at the

Clausius-Clapeyron

Vapor pressure (h
N
o

rate (approximately
0

700 10 50 agt4p /e per °C)" (Skliris et
Temperature (° C) al. 2016).

Image from Friedrich, K., et al., 2018. Reservoir evaporation in the Western Skliris, N., et al, 2016, Global water cycle amplifying at less than the

United States: current science, challenges, and future needs. Bulletin of the Clausius-Clapeyron rate. Scientific reports, 6(1), pp.1-9.
American Meteorological Society, 99(1), pp.167-187.
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What a 190-year-old equation says about
rainstorms in a changing climate

David Adam Authors Info & Affiliations

March 30, 2023  120(14) e2304077120 https://doi.org/10.1073/pnas.2304077120

“A lot of people are interpreting the equation
incorrectly. Clausius-Clapeyron controls the
amount of moisture in the atmosphere, but it
doesn’t control rainfall directly.” - Kevin Reed

Adam, D., 2023. What a 190-year-old equation says about rainstorms in a changing climate. Proceedings of the
National Academy of Sciences, 120(14).




Precipitation also depends on other factors, such as:
- the atmospheric circulation pattern and rainfall
mechanisms (i.e., convergence) and,

- atmospheric moisture availability.

Westra, S., Fowler, H.J., Evans, J.P., Alexander, L.V., Berg, P., Johnson, F., Kendon, E.J., Lenderink, G. and
Roberts, N., 2014. Future changes to the intensity and frequency of short-duration extreme rainfall. Reviews of
Geophysics, 52(3), pp.522-555.




Challenges with
Extremes

Assessing statistical trends
ot extremes requires
caution.

Weather Icons | Erik Flowers
CCBY 3.0




Challenges with extremes:
Severe Thunderstorms II st

Er /<Fovv
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bv 3-YEAR F/EF BIN Change in tornado
180 .
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140

120 .
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60 width increases

40

- (Edwards et al. 2021).

Three-year intervals (from 1995-97 to 2016-18).

Image from Edwards, R., Brooks, H.E. and Cohn, H., 2021. Changes in tornado climatology accompanying the
enhanced Fujita scale. J. App. Met. & Clim., 60(10), 1465-1482.




Challenges with extremes:
Severe Thunderstorms II Weatrer lcons

Erik Fovvers
CCBY 3.0

AII Ha|I Reports (1955 2014)
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Image from Allen, J.T. and Tippett, M.K., 2015. The characteristics of United States hail reports: 1955-2014. E-
Journal Sev. Storms Meteo., 10(3), pp.1-31.




An environmental perspective can help.

b) All Years:
DJF = 80 %tile GoM Basin SSTA
. \f é‘ & ";;..\ . B
e Environments favorable for extreme events i\;} | W, 1L AN

can serve as useful proxies for frequency, 1%

intensity, and spatial extent assessments. L oo

- -1%

o)
Images from 3%

Molina, M. J., J. T. Allen, and V. A. Gensini
(2018). The Gulf of Mexico and ENSO
influence on subseasonal and seasonal
CONUS winter tornado variability. Journal
of Applied Meteorology and Climatology,
57(10), 2439-2463.
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Case Studies

Using tropical cyclones to
help our understanding of
extremes.

Weather Icons | Erik Flowers
CCBY 3.0




Tropical cyclone drivers

N

Converging Near-

K/v Surface Winds
5°latitude N - mmmmmm e e

Equator

UK Met Office [ National Meteorological Library & Archive




A Incipient Storm

"...local atmospheric

v L y T N warming caused by this

-P*

g— T ‘cloud greenhouse effect’ is
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B Intensifying Hurricane a key trigger for promoting
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Image from Ruppert et al., 2020.

and accelerating the

\ evolution of... precursor(s]...

into intense TCs.”

Ruppert Jr, J.H., Wing, A.A., Tang, X. and Duran, E.L., 2020. The critical role of cloud-infrared radiation feedback in
tropical cyclone development. Proceedings of the National Academy of Sciences, 117(45), pp.27884-27892.




Challenges with extremes: |E e
Tropical Cyclones

: . : Image from
Tropical Cyclone Projections (2°C Global Warming)
Knutson, T. et al., 2020:
Tropical Cyclones and
Climate Change
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An impacts perspective can help.

From IPCC AR6:

e Increases in total precipitation and/or precipitation rates are likely.

o Sea level rise projected to increase coastal vulnerability to tropical cyclones.
o Global proportion of tropical cyclones reaching very high intensity is

projected to increase.

Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis,
M.I. and Huang, M., 2021. Climate change 2021: the physical science basis. Contribution of working group | to the
sixth assessment report of the intergovernmental panel on climate change, 2.




Hurricane (Tropical Cyclone) Harvey (2017)

Estimated cost of $125
billion.

30,000 high-water rescues.

Water from rivers left the
entire watersheds in

southeast Texas.

216 Tornado Warnings were

issued.

I
[~} ¢

5 Day Point Rainfall
Amounts in Inches

* Harvey continued to produce
record breaking rainfall totals of
45 to over 50 inches... with
continued rainfall

|l © Cedar Bayou -51.88
M+ Berry Bayou -44.88
+ League City -49.84
* Mary’s Creek -49.80
* Goose Creek -44.08
+ Greens Bayou -41.36
+ Buffalo Bayou - 35.60
* Addicks Dam -33.44

Point rainfall
data courtesy

Image: NOAA NWS West Gulf River
Forecast Center




(a) 10-min precipitation Houston, TX (b) Cumulative precipitation Houston, TX
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Image from Van Oldenborgh, et al., 2017.

Van Oldenborgh, et al., 2017. Attribution of extreme rainfall from Hurricane Harvey. Environmental Research
Letters, 12(12), p.124009.




Hurricane (Tropical Cyclone) Sandy (2012)

. 147 deaths and left 200,000

without shelter.

- A storm surge measuring

nearly 4.3 meters in New
York City.

. An estimate of >$50 billion
in damages.

Blake, E.S., et al., 2013. Tropical cyclone report: Hurricane Sandy. NOAA
National Hurricane Center, 12, pp.1-10.

Image: NASA GOES-13, October 28, 2012
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Ihiage from Strauss, B.H., et al., 2021.

“We find that approximately $8.1B... of Sandy’'s damages are
attributable to climate-mediated anthropogenic sea level rise, as
is extension of the flood area...”

Strauss, et al., 2021. Economic damages from Hurricane Sandy attributable to sea level rise caused by
anthropogenic climate change. Nature comms.
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Impact of Extremes on Vulnerable Populations

Historically marginalized communities experience
disproportionate vulnerability to extreme weather

events and climate change (Thomas et al. 2019).

Thomas, K., Hardy, R.D., Lazrus, H., Mendez, M., Orlove, B., Rivera-Collazo, I., Roberts, J.T., Rockman, M., Warner, B.P. and Winthrop, R., 2019. Explaining differential
vulnerability to climate change: A social science review. Wiley Interdisciplinary Reviews: Climate Change, 10(2), p.e565.

IPCC, 2022: Summary for Policymakers [H.-O. Portner, D.C. Roberts, E.S. Poloczanska, K. Mintenbeck, M. Tignor, A. Alegria, M. Craig, S. Langsdorf, S. Loschke, V. Méller, A.
Okem (eds.)]. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group Il to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 3-33, doi:10.1017/9781009325844.001.



https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_SummaryForPolicymakers.pdf

Hurricane (Tropical Cyclone) Maria (2017)

- Tied for the sixth-fastest
intensitying hurricane in the

Atlantic basin record. 5

+ The rains caused serious flooding

and mud slides across Puerto Rico
(max ~38 inches/~97 cm). g

TJUA NEXRAD Radar at 354 AM AST showing the center of
Hurricane Maria just south of Vieques (NOAA NWS).

Pasch, R.J., Penny, A.B. and Berg, R., 2023. Hurricane Maria (AL152017), NOAA National Hurricane Center
Tropical Cyclone Report.




L
Hurricane (Tropical Cyclone) Maria (2017)

e Based on a study from George Washington University's Milken Institute
School of Public Health (2018), the government of Puerto Rico estimated

there were 2,975 fatalities.
e Cell phone service was lost and municipal water supplies were knocked out.

o At of the end of 2017, nearly half of Puerto Rico's residents were still without

power.

Pasch, R.J., Penny, A.B. and Berg, R., 2023. Hurricane Maria (AL152017), National Hurricane Center Tropical
Cyclone Report.
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Climate change: a threat to
human wellbeing and health of
the planet. Taking action now
can secure our future




