

Standard Gambler's Ruin:

A fair coin is tossed. Each time a gambler wins/loses $\$ 1$ against the house.
 Starting with $\$ 100$, say, he/she will eventually lose it all.

Standard Gambler's Ruin:

~ simple Random Walk (unbiased) on a line

$n \quad n$

A percentage version:

A fair coin is tossed. Each time a gambler wins/loses a fixed percentage (e.g., 10%)
of his/her wealth (at the time of the toss).
$\mathrm{He} /$ she will never "lose it all", but what can we expect after N tosses?

Intuitive guess:

Since the coin is fair, the "return"

$$
R \equiv \frac{\text { wealth (at the end) }^{\text {wealth (at start) }}}{\text { and }}
$$

should be $\mathbf{1}_{\text {(on average, for any N)! }}$

Yet, simulations show...

Yet, simulations seem

... to indicate

R dropping precipitously with N !

e.g., $\langle R\rangle$ - average over 100 runs, for $N=1 \mathrm{~K}$ and 10 K :
$\langle\ldots\rangle$ average over 100 runs

$\log \langle R\rangle$

Central Limit Theorem

$\langle R\rangle$ increases exponentially with N !

What's the CLT? and Why should we invoked here?

Intuitive guess is right!

Exact computation shows

$$
\langle R\rangle \equiv 1
$$

for any N !!

Intuitive guess is right!

An fair coin means we "win/lose" half the time:

$$
W=N / 2
$$

That's no good enough, since we really need R !

$B U T$, we don't break even $(R=1)$

 when we "win" half the time!

$3 / 4$ of the time, you LOSE!

Y巴T, if you average over all possible outcomes, the game is EVEN !
$-19-1-1+21$

From one toss to the next,

$$
R(\tau+1)={ }_{[1-s]}^{[1+s]} R(\tau)
$$

S is the "stake" e.g.,10\%

From one toss to the next,

$$
R(\tau+1)=[1+x s] R(\tau)
$$

S is the "stake" e.g.,10\%
$X= \pm 1$ for win/loss of the toss.

So, a "history" of the game is given

 by a string of x 's:$$
x_{1}, x_{2}, \ldots x_{\tau}, \ldots x_{N}
$$

just like in the STANDARD game
$p(x)$
n

So, a "history" of the game is given

 by a string of x 's, and at the end, R is a product of these factors:$$
R=\left[1+x_{N} s\right] \ldots\left[1+x_{1} s\right]
$$

To change the product of a string to the sum

(so that we can use the mapping to a random walk and CLT), just use logarithm!!

$\rho_{N} \equiv$

$$
\ln R(N)=\sum_{\tau=1}^{N} \ln \left[1+x_{\tau} s\right]
$$

BIASED Random Walk (in sppece)!
 ...with unequal steps

On the average, you LOSE!

$$
\begin{gathered}
\mu=\ln \left[1-s^{2}\right] / 2 \cong-s^{2} / 2 \\
\sigma^{2}=-[\ln (1-s) / \ln (1+s)]^{2} / 4 \cong s^{2}
\end{gathered}
$$

To get an idea of how badly off we are with this BIASED Random Walk,

...let's exploit the CLT
to see what $P\left(\rho_{N}\right)$ is like
(after N tosses).

The exact P is just a fancier binomial. But, getting the fraction of loss is not easy: No closed form for partial sums of binomia ls! Thus, CLT. Also, for a dice instead, exact P would be impossible!

What's the CLT? and

Suppose x is a random variable picked from some distribution, $p(x)$, with finite mean μ and variance σ^{2}
st. dev. σ
Generate N of them and add:

$$
X \equiv x_{1}+\ldots+x_{N}
$$

$\substack{\text { forthe exents } \\ \text { and tre curus }} \tilde{P}=[\tilde{p}]^{N}$
...and call the induced distribution for X

What's the CLT? and

An excellent approximation for P is \mathcal{N}, the normal (Gussin) distribution, if N is large. $^{\text {a }}$

To be specific, $\mathcal{N}(X)$ has

 mean $N \mu_{\circ}$ and variance $N \sigma^{2}$All you need from p are its mean and variance!

What's the CLT? and

An excellent approximation for P is \mathcal{N}, the normal ${ }_{\text {caussinn) }}$ distribution, if N is large.

All other properties of p

are " irrelevant "!!
ce $N \sigma^{2}$

All you need from p are its mean and variance!

i.e., CLT assures us that $P\left(\rho_{N}\right) \cong$

$$
\mathcal{N}\left(\rho_{N}\right) \propto \exp -\frac{\left(\rho_{N}-N \mu\right)^{2}}{7_{N} \sim^{2}}
$$ $2 N \sigma^{2}$

mean $=N \mu($ receding as $N!!)$

$$
\begin{gathered}
\mu \cong-s^{2} / 2 \\
\sigma \cong S
\end{gathered}
$$ and outpaces st. dev. $\sqrt{N} \sigma \ldots$

Thus, the fraction of times $\rho<0$...increases dramatically with N.

The CLT has helped us appreciate how simulations gave us the terrible losses !

But then, the CLT can lead us ASTRAY, if we ${ }_{\text {criesesty }}$ compute $\langle R\rangle$ with it...

So,

$$
\begin{aligned}
& \langle R\rangle_{\text {normal }}=\left\langle e^{\rho}\right\rangle_{\text {normal }}= \\
& \int e^{\rho} \exp \left\{-\frac{(\rho-N \mu)^{2}}{2 N \sigma^{2}}\right\}
\end{aligned}
$$

But then, the CLT can lead us ASTRAY,

 if we arresesty compute $\langle R\rangle$ with it,
So,

$$
\langle R\rangle_{\text {normal }}=\left\langle e^{\rho}\right\rangle_{\text {normal }} \stackrel{\circ}{\circ}=
$$

$$
\exp N\left\{\mu+\sigma^{2} / 2\right\}
$$

In other words, CLT lead us to believe that return should...

diverge exponentially with N !!

...an advice that brings assured ruin.

So, what went so wrong?

(with exploiting the CLT here)

What's the CLT? and

Why should we invoked here?

An excellent approximation for P is \mathcal{N}, the normal (Gussim) distribution, if N is large. $_{\text {o }}$

What's the CLT? and

 excellent? me normal (Gausian) distrio
Uniform

convergence

If you demand a maximum error $\bigcirc \subseteq \varepsilon$,

 you can find an N (that depends ong)... so that \mathcal{N} differs from P by less than ε
What's the CLT? and

An excellent approximation for arge"? the normal (Gussin) distribution, if N is large. $_{\text {a }}$

For an example of "how large," consider the "fair coin" case ... labeling $x= \pm 1$ for H / T, so that $\mu=0$ and $\sigma=1$.

$$
p(x)
$$

Meanwhile, $X=-N,-N+2, \ldots, N$ and $P(X)$ is just the binomial.

https://en.wikipedia.org/wiki/ Binomial_distribution

$n=1$

E:

$\because \because \theta_{0}$
https://en.wikipedia.org/ wiki/ Nomal_distribution

What's tir LT? and

Why should we invoked here?

Add $N x$'s of ± 1 and binomial $P(X) \cong \mathcal{N}(X ; 0, N)$
Add $N \rho$'s of $\pm_{\text {whatever }}$ and fancy binomial

$$
\begin{array}{r}
P\left(\rho_{N}\right) \cong \mathcal{N}\left(\rho_{N} ; N \mu, \sqrt{N} \sigma\right) \\
\underbrace{\circ^{\circ}}_{\substack{\text { All we need } \\
\text { are these! }}})
\end{array}
$$

We used the CLT to get good quantitative estimates for the simulation results.

$$
S=10 \%
$$

$$
\begin{gathered}
\mu \cong-N s^{2} / 2 \\
\sigma \cong \sqrt{N s}
\end{gathered}
$$

So, what went so wrong? using the CLT to find $\langle R\rangle$?

Though $P(\rho) \cong \mathcal{N}(\rho)$ is excellent for all ρ, $e^{\rho} P(\rho)$ and $e^{\rho} \mathcal{N}(\rho)$ may be quite far apart for some ρ !!

" e^{ρ} has long/large tails !!"

...so that integrals over the above can be quite different.

So, what went so wrong? using the CLT to find $\langle R\rangle$?

Though $P(\rho) \cong \mathcal{N}(\rho)$ is excellent for all

For the experts:
Though $\int^{x} \mathcal{N}(\xi)$ converges uniformly to $\int^{x} P(\xi)$,
$\int^{x} e^{\xi} \mathcal{N}(\xi)$ does not c.u. to $\int^{x} e^{\xi} P(\xi)!$
...so that integrals over the above can be quite different.

Take-home messages:

What the CLT tells us is "impressive"! BUT,
... if you want to find the average of anything (associated with P),
then you'd better look at the tails of that anything (before using the CLT blindy).

For the experts:

If you want to find the average of some function, f, of the "macroscopic variable" X, then ...

- If your f is a function of $\xi \equiv X / N$ alone, then, the CLT assures you that $\langle f(\xi)\rangle \rightarrow f(\mu)$ for $N \rightarrow \infty$.
- If your f is a function of $\xi \equiv X / \sqrt{ } N \sigma$ alone, AND you know $\mu=0$, then, the CLT assures you that you can use the standard normal distribution to get $\langle f(\xi)\rangle$ for $N \rightarrow \infty$.
- In all other cases, study the tails of f carefully before relying on the CLT for $\langle f\rangle$!

For the aficionados:

ALL cumulants (beyond the first two, predicted by the CLT) are "infinitely wrong"!

Conclusion

If you teach/use the central Limit Theorem, please consider an extra warning label:

Do NDT blindly compute $\langle\bullet\rangle$
with the Gaussian approximant!
consider carefully...
...the tails of the \bullet first.

Fate of a gambler:

A cautionary tale for cavalier applications of the central limit theorem.

Tossing a fair coin N times, a gambler wins/loses 10% of his/her holdings against the house if each toss is head/tail (H / T). Measuring his/her fortunes by R (ratio of final to initial wealth), then we may ask for $\langle R\rangle$ (the average over all possible 2^{N} histories). Since the game sounds like it's even, we may guess $\langle R\rangle=1$. When computed exactly, it is indeed so. Yet, when simulations are done, $\langle R\rangle$ drops exponentially with N, e.g., to $O\left(10^{-14}\right)$ for $N=10^{4}$. A further puzzle is the following: It is tempting to apply the central limit theorem and replace the distribution of $H-T$ by a normal (since the exact one is just a binomial, in $\ln R$). Replying on that leads to an $\langle R\rangle$ that increases exponentially with N ! Along with resolutions to these paradoxes, I propose that we add a "warning label" when the central limit theorem is taught.

