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A fair coin is tossed. Each time a gambler 
wins/loses $1 against the house. 

Standard Gambler’s Ruin:
A fair coin is tossed. Each time a gambler 
wins/loses $1 against the house. 
Starting with $100, say, he/she will 

eventually lose it all.

The earliest known mention of the gambler's ruin problem 
is a letter from Blaise Pascal to Pierre Fermat in 1656

https://en.wikipedia.org/wiki/Gambler's_ruin RKPZia 2023

https://en.wikipedia.org/wiki/Blaise_Pascal
https://en.wikipedia.org/wiki/Pierre_Fermat
https://en.wikipedia.org/wiki/Gambler's_ruin


0 ….

Standard Gambler’s Ruin:
~ simple Random Walk (unbiased) on a line
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A fair coin is tossed. Each time a gambler 
wins/loses a fixed percentage (e.g., 10%) 

of his/her wealth (at the time of the toss) . 

A percentage version:
A fair coin is tossed. Each time a gambler 
wins/loses a fixed percentage (e.g., 10%) 

of his/her wealth (at the time of the toss) . 
He/she will never “lose it all”, but 

what can we expect after N tosses?
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Since the coin is fair, the “return”

wealth (at the end)

wealth (at start)

should be 1 (on average, for any N )! 

Intuitive guess:

R ≡
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Yet, simulations show…

N = 100
N = 500

τ (tosses)
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… to indicate

e.g.,         - average over 100 runs, 
for N= 1K and 10K:

R dropping precipitously with N !

〈R〉

Yet, simulations seem
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〈R〉

N = 1000

N = 10K

log 〈R〉

10−14

〈…〉 average over 100 runs
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OTOH, if we invoke the  
Central Limit Theorem,

〈R〉 increases exponentially with N !

What’s the CLT?   and 
Why should we invoked here?
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Exact computation shows

for any N !!

Intuitive guess is right!

〈R〉 ≡ 1

 RKPZia 2023



Exact computation shows

for any N !!

Intuitive guess is right!

〈R〉 ≡ 1
So, how do both
simulations and CLT 

lead us astray 
… so badly !?

For the curious:
It’s not a hard calculation. 
Ask me at the end if you want.
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Here’s an initial hint that 

this game is UNFAIR!
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An fair coin means we “win/lose” half the time:
W = N/2

That’s no good enough, since we really need R!
BUT, we don’t break even (R=1) 

when we “win” half the time! 

$100
$90 $110

$81 $99 $121
winlose
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An fair coin means we “win/lose” half the time:
W = N/2

That’s no good enough, since we really need R!
BUT, we don’t break even (R=1) 

when we “win” half the time! 

$100
$90 $110

$81 $99 $121
winlose

1/4
1/2

1/4

3/4 of the time, you LOSE!
YET, if you average over all possible outcomes, 

the game is EVEN !
−19  −1 +21−1
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s is the “stake”   e.g.,10%

R(τ +1) = [1+ xs] R (τ)

From one toss to the next, 

[1+ s]
[1− s]
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s is the “stake”   e.g.,10% 

x = ±1  for win/loss of the toss. 

R(τ +1) = [1+ xs] R (τ)

From one toss to the next, 
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So, a “history” of the game is given 
by a string of x’s:

x1,  x2, …  xτ , …  xN

just like in the STANDARD game

p(x)

x-1 0 1
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So, a “history” of the game is given 
by a string of x’s …
So, a “history” of the game is given 
by a string of x’s, and at the end,  

R is a product of these factors: 

R = [1+ xNs] … [1+ x1s]
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So, a “history” of the game is given 
by a string of x’s, and the end return 
is a product of these factors. 

To change the product of a string 
to the sum

(so that we can use the mapping to a random walk and CLT), 

just use logarithm!!

N

τ=1
ln R(N) =  ∑ ln [1+ xτs]

ρN ≡
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μ = ln[1− s2 ]/2
≅ − s2/2 < 0

ln(1−s)

ρ0 
(R=1)

ln(1+s)

1/2                             1/2

probability

BUT… is bigger than
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BIASED Random Walk (in ρ space)!
…with unequal steps

On the average, you LOSE !

μ = ln [1 − s2 ]/2  ≅ − s2/2
σ2 = − [ln(1−s)/ln(1+s)]2/4  ≅ s2
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To get an idea of how badly off 
we are with this 

BIASED Random Walk,

…let’s exploit the CLT
to see what P (ρN) is like

(after N tosses).
For the experts: 
The exact P is just a fancier binomial. But, getting 
the fraction of loss is not easy: No closed form for 
partial sums of binomials! Thus, CLT.  Also, for a 
dice instead, exact P would be impossible!
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What’s the CLT?   and

Why should we invoked here?
Suppose x is a random variable picked from 
some distribution, p(x), with finite

mean μ and variance σ 2

Generate N of them and add:
X  ≡ x1 + … + xN

…and call the induced distribution for X
P(X ) .

For the experts
and the curious:

st. dev. σ
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What’s the CLT?   and

Why should we invoked here?
An excellent approximation for P is N, 
the normal (Gaussian) distribution, if N is large. 

To be specific, N (X) has
mean  Nμ and variance  Nσ2

 RKPZia 2023

All you need from p
are its mean and variance! 

All you need from p
are its mean and variance! 



What’s the CLT?   and

Why should we invoked here?
An excellent approximation for P is N, 
the normal (Gaussian) distribution, if N is large. 

To be specific, N (X) has
mean  Nμ and variance  Nσ2

 RKPZia 2023

All you need from p
are its mean and variance! 

All you need from p
are its mean and variance! 

All other properties of p
are “ irrelevant ” !!



i.e., CLT assures us that P (ρN) ≅

N (ρN) ∝ exp −
(ρN − Nμ) 2

2Nσ2

mean = Nμ (receding as N !!) 
and outpaces st. dev. √Nσ …μ ≅ −s2/2

σ ≅ s
 RKPZia 2023



N(ρN)

N =     30

100

300

1000

ρN

s = 10 %

lose win

mean ≅ − Ns2/2
st.dev. ≅ √Ns
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Thus, the fraction of 
times ρ < 0 (lose)

…increases dramatically 
with N.



Thus, the fraction of times ρ < 0
…increases dramatically with N.

Thus, the fraction of times ρ < 0
…increases dramatically with N.

The CLT has helped us appreciate 
how simulations gave us 

the terrible losses ! 
For the experts: 

Fraction of 
winning histories ~ 
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But then, the CLT can lead us ASTRAY, 
if we carelessly compute 〈R〉 with it…

So, 
〈R 〉normal = 〈e ρ〉normal =

∫ e ρ exp{         }(ρ − Nμ) 2

2Nσ2∫ e ρ exp{         }(ρ − Nμ) 2

2Nσ2
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But then, the CLT can lead us ASTRAY, 
if we carelessly compute 〈R〉 with it…

So, 
〈R 〉normal = 〈e ρ〉normal =

∫ e ρ exp{         }(ρ − Nμ) 2

2Nσ2∫ e ρ exp{         }(ρ − Nμ) 2

2Nσ2exp N{μ+σ2/2} 

can prove this is 

POSITIVE!
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In other words, CLT lead us 
to believe that return should… 

diverge exponentially with N !!

…an advice that brings 
assured ruin.

 RKPZia 2023



So, what went so wrong? 
(with exploiting the CLT here)
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What’s the CLT?   and

Why should we invoked here?

An excellent approximation for P is N, 
the normal (Gaussian) distribution, if N is large. 

How 
excellent?

What’s 
“large”?
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What’s the CLT?   and

Why should we invoked here?
An excellent approximation for P is N, 
the normal (Gaussian) distribution, if N is large. 

If you demand a maximum error of ε , 
you can find an N (that depends on ε) …

If you demand a maximum error of ε , 
you can find an N (that depends on ε) …

so that N differs from P by less than ε
for ALL X!!

Uniform
convergence

For the experts/purists:
It’s actually the CDF, not the PDF, 
that’s uniformly convergent.
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What’s the CLT?   and

Why should we invoked here?
An excellent approximation for P is N, 
the normal (Gaussian) distribution, if N is large. 

For an example of “how large,” consider the 
“fair coin” case … labeling x = ±1 for H/T, so 
that μ=0 and σ=1.

Meanwhile, X = −N, −N+2, …, N
and P(X) is just the binomial.

p(x)

x-1 0 1
 RKPZia 2023



N = 6

https://en.wikipedia.org/wiki/Binomial_distribution

N=10
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N = 6

https://en.wikipedia.org/wiki/Binomial_distribution

N=10

https://en.wikipedia.org/
wiki/Normal_distribution
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What’s the CLT?   and

Why should we invoked here?

Add N x’s of ±1 and binomial P(X) ≅ N (X ; 0,N)
Add N ρ’s of ± whatever and fancy binomial
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All we need
are these!

All we need
are these!



N(ρN)

N =     30

100

300

1000s = 10 %

lose win

μ ≅ − Ns2/2
σ ≅ √Ns

We used the CLT to get 
good quantitative estimates
for the simulation results.
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So, what went so wrong?  using the CLT to find 〈R 〉 ?

Though P(ρ) ≅ N (ρ) is excellent for all ρ,

e ρ P(ρ) and    e ρ N (ρ)

may be quite far apart for some ρ !!

“eρ has long/large tails !!”
…so that integrals over the above can be quite different.
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So, what went so wrong?  using the CLT to find 〈R 〉 ?

Though P(ρ) ≅ N (ρ) is excellent for all ρ,

e ρ P(ρ) and    e ρ N (ρ)

may be quite far apart for some ρ !!

“eρ has long/large tails !!”
…so that integrals over the above can be quite different.

 RKPZia 2023

For the experts:

Though ∫ N(ξ) converges uniformly to ∫ P(ξ) ,

∫ eξ N(ξ) does not c.u. to ∫ eξ P(ξ) !
XX

XX



Take-home messages: 
What the CLT tells us is “impressive”!   BUT, 
… if you want to find the average of anything (associated with P),

then you’d better look at the tails of that anything (before using the CLT blindly).

For the experts: 
If you want to find the average of some function, f , of the “macroscopic 
variable” X, then …

• If your f is a function of ξ ≡ X/N alone, then, the CLT assures you 
that 〈 f (ξ ) 〉 → f(μ) for N →∞.

• If your f is a function of ξ ≡ X/√Nσ alone, AND you know μ=0, 
then, the CLT assures you that you can use the standard normal 
distribution to get 〈 f (ξ ) 〉 for N →∞.

• In all other cases, study the tails of f carefully before relying on 
the CLT for 〈f〉 !

For the aficionados: 
ALL cumulants (beyond the first two, predicted by the CLT) are “infinitely wrong”!
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If you teach/use the Central Limit Theorem, 

please consider an extra warning label: 

Conclusion

Do NOT blindly compute 〈•〉
with the Gaussian approximant!

Consider carefully …

…the tails of the • first.
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Fate of a gambler:
A cautionary tale for cavalier applications 

of the central limit theorem.
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Tossing a fair coin N times, a gambler wins/loses 10% of his/her holdings against the 
house if each toss is head/tail (H/T). Measuring his/her fortunes by R (ratio of final to 
initial wealth), then we may ask for 〈R〉 (the average over all possible 2N histories). 
Since the game sounds like it’s even, we may guess 〈R〉=1. When computed exactly, it is 
indeed so. Yet, when simulations are done, 〈R〉 drops exponentially with N, e.g., to 
O(10−14) for N=10 4. A further puzzle is the following: It is tempting to apply the central 
limit theorem and replace the distribution of H−T by a normal (since the exact one is 
just a binomial, in lnR). Replying on that leads to an 〈R〉 that increases exponentially 
with N! Along with resolutions to these paradoxes, I propose that we add a “warning 
label” when the central limit theorem is taught.
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