Joe Redish

Fate of a Gambler: A cautionary tale for cavalier applications of the central limit theorem

Harvey Gould Kevin Bassler

R.K.P. Zia

Center for Soft Matter and Biological Physics, Physics Department, Virginia Tech and Department of Physics, University of Houston

Standard Gambler's Ruin:

A fair coin is tossed. Each time a gambler wins/loses \$1 against the house. Starting with \$100, say, he/she will *eventually lose it all*.

RKPZia 20

The earliest known mention of the gambler's ruin problem is a letter from <u>Blaise Pascal</u> to <u>Pierre Fermat</u> in **1656** <u>https://en.wikipedia.org/wiki/Gambler's_ruin</u>

Standard Gambler's Ruin:

~ simple Random Walk (unbiased) on a line

A percentage version:

A fair coin is tossed. Each time a gambler wins/loses a *fixed percentage* (e.g., 10%) of his/her wealth (at the time of the toss).
He/she will *never* "lose it all", but what can we <u>expect</u> after *N* tosses?

Intuitive guess:

Since the coin is fair, the "return"

$$R \equiv \frac{\text{wealth (at the end)}}{\text{wealth (at start)}}$$

should be 1 (on average, for any N)!

Yet, simulations show...

Yet, simulations seem

... to indicate

RKPZia 20

R dropping *precipitously* with *N* !

e.g., $\langle R \rangle$ - average over 100 runs, for N= 1K and 10K:

OTOH, if we invoke the Central Limit Theorem,

 $\langle R \rangle$ *increases* exponentially with N !

What's the **CLT**? and Why should we invoked here?

Intuitive guess is right!

Exact computation shows

 $\langle R \rangle \equiv 1$

for any N!!

An fair coin means we "win/lose" half the time: W = N/2That's no good enough, since we really need *R*! *BUT*, we don't break even (*R*=1) when we "win" half the time!

From one toss to the next,

$R(\tau+1) = \begin{bmatrix} 1+s \\ 1-s \end{bmatrix} R(\tau)$

S is the "stake" e.g.,10%

From one toss to the next,

$R(\tau+1) = [1+xs] R(\tau)$

S is the "stake" e.g.,10% $\chi = \pm 1$ for win/loss of the toss. So, a "history" of the game is given by a string of *x*'s:

 $x_1, x_2, \dots, x_{\tau}, \dots, x_N$

just like in the STANDARD game

ΛΛ

p(x)

So, a "history" of the game is given by a string of x's, and at the end, R is a *product* of these factors:

$$R = [1 + x_N s] \dots [1 + x_1 s]$$

To change the *product* of a string to the *sum*

(so that we can use the mapping to a random walk and **CLT**), **just use** *logarithm*!!

 $\sum_{n=1}^{N} R(N) = \sum_{\tau=1}^{N} ln \left[1 + x_{\tau} S\right]$

On the average, you *LOSE* !

$$\mu = \ln \left[1 - s^2 \right] / 2 \cong -\frac{s^2}{2}$$

$$\sigma^2 = -\left[\frac{\ln(1-s)}{\ln(1+s)} \right]^2 / 4 \cong s^2$$

To get an idea of how badly off we are with this **BIASED** Random Walk,

...let's exploit the CLT to see what $P(\rho_N)$ is like (after *N* tosses).

For the experts:

PZia 2023

The exact *P* is just a fancier binomial. But, getting the fraction of loss is not easy: No closed form for partial sums of binomials! Thus, CLT. Also, for a dice instead, exact P would be impossible!

What's the CLT? and

An excellent approximation for P is \mathcal{N} , the <u>normal</u> (Gaussian) distribution, if N is large.

What's the CLT? and An excellent approximation for P is \mathcal{N} , the normal (Gaussian) distribution, if N is large. All other properties of p ce $N\sigma^2$ are "*irrelevant*"!! All you need from p are its mean and variance!

RKPZia 20

i.e., CLT assures us that
$$P(\rho_N) \cong$$

$$\mathcal{N}(\rho_N) \propto exp - \frac{(\rho_N - N\mu)^2}{2N\sigma^2}$$

$$\max_{\substack{\mu \cong -s^2/2 \\ \sigma \cong s}} \max_{\substack{n = n\mu \text{ (receding as } N \text{ !!) \\ nd \text{ outpaces } \text{ st. dev. } \sqrt{N\sigma} \dots}$$

But then, the CLT can lead us <u>ASTRAY</u>, if we carelessly compute $\langle R \rangle$ with it...

So,

$$\langle R \rangle_{normal} = \langle e^{\rho} \rangle_{normal} =$$

$$e^{\rho} \exp\left\{-\frac{(\rho-N\mu)^2}{2N\sigma^2}\right\}$$

But then, the CLT can lead us <u>ASTRAY</u>, if we carelessly compute $\langle R \rangle$ with it

can prove this is

POSITIVE!

So,

 $\langle R \rangle_{normal} = \langle e^{\rho} \rangle_{normal} =$

exp $N\{\mu+\sigma^2/2\}$

In other words, CLT lead us to believe that return should...

diverge exponentially with N !!

...an advice that brings assured ruin.

So, what went so wrong?

(with exploiting the CLT here)

What's the CLT? and

p(x)

-1 0 1

X

An excellent approximation for *se*?? the *normal* (Gaussian) distribution, if *N* is large.

For an example of "how large," consider the "fair coin" case ... labeling $x = \pm 1$ for H/T, so that $\mu = 0$ and $\sigma = 1$.

Meanwhile, X = -N, -N+2, ..., Nand P(X) is just the binomial.

https://en.wikipedia.org/ wiki/Normal_distribution

k

n = 1

 $p(k)_{\uparrow}$

0.18

0.16

0.14

0.12

0.10

0.08

0.05 0.04

0.02

0.00

p(k) 0.18

0.16

0.14

0.12

0.10

0.08

0.05

0.04

0.02

1/6

123456

What's the **LT**? and Why should we invoked here?

Add N x's of ± 1 and binomial $P(X) \cong \mathcal{N}(X; 0, N)$ Add $N \rho$'s of \pm_{whatever} and fancy binomial

 $P(\rho_N) \cong \mathcal{N}(\rho_N; N\mu, \sqrt{N\sigma})$ All we need are these!

RKPZia 20

So, what went so wrong? using the CLT to find $\langle R \rangle$?

Though $P(\rho) \cong \mathcal{N}(\rho)$ is excellent for all ρ , $e^{\rho} P(\rho)$ and $e^{\rho} \mathcal{N}(\rho)$

may be quite far apart for some ρ !!

"e^p has long/large tails !!"

...so that integrals over the above can be quite different.

Take-home messages:

What the CLT tells us is "impressive"! **<u>BUT</u>**,

... if you want to find the average of anything (associated with *P*), then you'd better look at the tails of that anything (before using the CLT blindly).

For the experts:

If you want to find the average of some function, f, of the "macroscopic variable" X, then ...

- If your *f* is a function of $\xi \equiv X/N$ *alone*, then, the CLT assures you that $\langle f(\xi) \rangle \rightarrow f(\mu)$ for $N \rightarrow \infty$.
- If your *f* is a function of $\xi \equiv X/\sqrt{N\sigma}$ <u>alone</u>, AND you know $\mu=0$, then, the CLT assures you that you can use the standard normal distribution to get $\langle f(\xi) \rangle$ for $N \to \infty$.
- In all other cases, study the tails of *f* <u>carefully</u> before relying on the CLT for (*f*) !

For the aficionados:

ALL cumulants (beyond the first two, predicted by the CLT) are "infinitely wrong"!

Conclusion

If you teach/use the Central Limit Theorem, please consider an extra warning label:

Do NOT blindly compute (•) with the Gaussian approximant! Consider carefullythe **tails** of the • first.

Fate of a gambler:

A cautionary tale for cavalier applications of the central limit theorem.

Tossing a fair coin *N* times, a gambler wins/loses 10% of his/her holdings against the house if each toss is head/tail (*H*/*T*). Measuring his/her fortunes by *R* (ratio of final to initial wealth), then we may ask for $\langle R \rangle$ (the average over all possible 2^{*N*} histories). Since the game sounds like it's even, we may guess $\langle R \rangle$ =1. When computed exactly, it is indeed so. Yet, when simulations are done, $\langle R \rangle$ drops exponentially with *N*, e.g., to $O(10^{-14})$ for N=10⁴. A further puzzle is the following: It is tempting to apply the central limit theorem and replace the distribution of *H*–*T* by a normal (since the exact one is just a binomial, in *lnR*). Replying on that leads to an $\langle R \rangle$ that *increases* exponentially with *N*! Along with resolutions to these paradoxes, I propose that we add a "warning label" when the central limit theorem is taught.