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A simple approach to determining planetary orbits

Quantum solutions



The conventional way to determine Kepler 
orbits is complicated. For example, we 

sketch how Goldstein does this.
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Goldstein derivation
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Hamilton equation of motion: 𝑟̇𝑟 = 𝑝𝑝𝑟𝑟
𝑚𝑚

 and ̇𝑝𝑝𝑟𝑟 = 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐿𝐿2

𝑚𝑚𝑚𝑚3
− 𝑘𝑘

𝑟𝑟2
 , 𝜃̇𝜃 = 𝐿𝐿

𝑚𝑚𝑟𝑟2
 , and 𝐿̇𝐿 = 0 

So, we have 𝑟̈𝑟 = 𝐿𝐿2

𝑚𝑚2𝑟𝑟3
− 𝑘𝑘

𝑚𝑚𝑚𝑚2
. Multiply by 𝑟̇𝑟 and integrate  to yie ld: 1

2
𝑟̇𝑟2 = 𝐸𝐸 − 𝐿𝐿2

2𝑚𝑚2𝑟𝑟2
+ 𝑘𝑘

𝑚𝑚𝑚𝑚
 ,

with 𝐸𝐸 the  energy (arising as an integration constant).

We have 𝑚𝑚𝑟𝑟2

𝐿𝐿
 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑, so 𝑟̇𝑟 = 2𝐸𝐸 − 𝐿𝐿2

𝑚𝑚2𝑟𝑟2
+ 2𝑘𝑘

𝑚𝑚𝑚𝑚
= 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝐿𝐿

𝑚𝑚𝑟𝑟2
, rearranging, we have

𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑
𝐿𝐿

𝑚𝑚𝑟𝑟2
1

2𝐸𝐸 − 𝐿𝐿2
𝑚𝑚2𝑟𝑟2 + 2𝑘𝑘

𝑚𝑚𝑟𝑟



Goldstein derivation (part II)
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�
𝜃𝜃0
𝑑𝑑𝑑𝑑 = �

𝑟𝑟0
𝑑𝑑𝑑𝑑

𝐿𝐿
𝑚𝑚𝑟𝑟2

1

2𝐸𝐸 − 𝐿𝐿2
𝑚𝑚2𝑟𝑟2 + 2𝑘𝑘

𝑚𝑚𝑟𝑟

𝜃𝜃 − 𝜃𝜃0 = −arc cos
𝐿𝐿2
𝑚𝑚𝑚𝑚𝑚𝑚 − 1

1 + 2𝐸𝐸𝐿𝐿2
𝑚𝑚𝑘𝑘2

So that

1
𝑟𝑟

=
𝑚𝑚𝑚𝑚
𝐿𝐿2

1 + 1 +
2𝐸𝐸𝐿𝐿2

𝑚𝑚𝑘𝑘2
cos 𝜃𝜃 − 𝜃𝜃0



The idea for a simplification comes from an 
unlikely source: Born and Jordan’s                    

Elementare Quantenmechanik (1930)
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New derivation
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Hamilton equation of motion: 𝑟̇𝑟 = 𝑝𝑝𝑟𝑟
𝑚𝑚

 and ̇𝑝𝑝𝑟𝑟 = 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐿𝐿2

𝑚𝑚𝑚𝑚3
− 𝑘𝑘

𝑟𝑟2
 , 𝜃̇𝜃 = 𝐿𝐿

𝑚𝑚𝑟𝑟2
 , and 𝐿̇𝐿 = 0 

Define  𝐴𝐴 = 𝑝𝑝𝑟𝑟 + 𝛼𝛼
𝑟𝑟

+ 𝛽𝛽, then choose 𝛼𝛼 and 𝛽𝛽 so that the  radial equations of motion 
are  decoupled:

𝐴̇𝐴 = 𝑝̇𝑝𝑟𝑟 −
𝛼𝛼
𝑟𝑟2

 𝑟̇𝑟 =
𝐿𝐿2

𝑚𝑚𝑚𝑚3
−
𝑘𝑘
𝑟𝑟2
−

𝛼𝛼
𝑚𝑚𝑟𝑟2

 𝑝𝑝𝑟𝑟 = −
𝛼𝛼
𝑚𝑚𝑟𝑟2

𝑝𝑝𝑟𝑟 −
𝐿𝐿2

𝛼𝛼𝛼𝛼
+
𝑚𝑚𝑚𝑚
𝛼𝛼

So that 𝛼𝛼 = ±𝑖𝑖𝑖𝑖 , 𝛽𝛽 = ∓𝑖𝑖 𝑚𝑚𝑚𝑚
𝐿𝐿

 , and 𝐴̇𝐴 = ∓𝑖𝑖 𝐿𝐿
𝑚𝑚𝑟𝑟2

 𝐴𝐴 = ∓𝑖𝑖 𝜃̇𝜃 𝐴𝐴 . Then we have

𝐴𝐴 𝜃𝜃 = 𝐴𝐴0𝑒𝑒𝑖𝑖𝑖𝑖 , 𝐴𝐴∗ 𝜃𝜃 = 𝐴𝐴0∗𝑒𝑒−𝑖𝑖𝑖𝑖 , and 𝐴𝐴 𝜃𝜃 = 𝑝𝑝𝑟𝑟 +
𝑖𝑖𝑖𝑖
𝑟𝑟
−
𝑖𝑖𝑖𝑖𝑖𝑖
𝐿𝐿



New derivation (part II)
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𝐴𝐴 𝜃𝜃 = 𝐴𝐴0𝑒𝑒𝑖𝑖𝑖𝑖 , 𝐴𝐴∗ 𝜃𝜃 = 𝐴𝐴0∗𝑒𝑒−𝑖𝑖𝑖𝑖 ,  and 𝐴𝐴 𝜃𝜃 = 𝑝𝑝𝑟𝑟 +
𝑖𝑖𝑖𝑖
𝑟𝑟
−
𝑖𝑖𝑖𝑖𝑖𝑖
𝐿𝐿

If we se t the  constants at the  point of closest approach 𝑟𝑟0 we have 𝐴𝐴0 = 𝑖𝑖 𝐿𝐿
𝑟𝑟0
− 𝑚𝑚𝑚𝑚

𝐿𝐿
We remove 𝑝𝑝𝑟𝑟 by taking the  difference:

𝑖𝑖𝑖𝑖
𝑟𝑟
−
𝑖𝑖𝑖𝑖𝑖𝑖
𝐿𝐿

=
1
2
𝐴𝐴 𝜃𝜃 − 𝐴𝐴∗ 𝜃𝜃 = 𝑖𝑖

𝐿𝐿
𝑟𝑟0
−
𝑚𝑚𝑚𝑚
𝐿𝐿

cos 𝜃𝜃 − 𝜃𝜃0

Or
1
𝑟𝑟

=
𝑚𝑚𝑚𝑚
𝐿𝐿2

+
1
𝑟𝑟0
−
𝑚𝑚𝑚𝑚
𝐿𝐿2

cos 𝜃𝜃 − 𝜃𝜃0



Using this approach of decoupling the 
differential equations is a much simpler 

derivation, requiring no complex integrations
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Energy

We have 𝑝𝑝𝑟𝑟
2 𝑡𝑡
2𝑚𝑚

+ 𝐿𝐿2

2𝑚𝑚𝑟𝑟2
− 𝑘𝑘

𝑟𝑟
+ 𝑚𝑚𝑘𝑘2

2𝐿𝐿2
= 1

2𝑚𝑚
𝐴𝐴∗ 𝑡𝑡 𝐴𝐴 𝑡𝑡 = 1

2𝑚𝑚
𝐴𝐴0 2 = constant

So, energy is conserved, automatically in this approach
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Relation to quantum mechanics
We found 𝐴𝐴 = 𝑝𝑝𝑟𝑟 + 𝑖𝑖𝑖𝑖

𝑟𝑟
− 𝑖𝑖𝑖𝑖𝑖𝑖

𝐿𝐿
 and 𝐴𝐴∗ = 𝑝𝑝𝑟𝑟 −

𝑖𝑖𝑖𝑖
𝑟𝑟

+ 𝑖𝑖𝑖𝑖𝑖𝑖
𝐿𝐿

If we make them operators, with  [𝑟̂𝑟, 𝑝̂𝑝𝑟𝑟] = 𝑖𝑖𝑖, then  

1
2𝑚𝑚

𝐴̂𝐴†𝐴̂𝐴 =
1
2𝑚𝑚

𝑝̂𝑝𝑟𝑟 −
𝑖𝑖𝑖𝑖
𝑟̂𝑟

+
𝑖𝑖𝑖𝑖𝑖𝑖
𝐿𝐿

𝑝̂𝑝𝑟𝑟 +
𝑖𝑖𝑖𝑖
𝑟̂𝑟
−
𝑖𝑖𝑖𝑖𝑖𝑖
𝐿𝐿

=
𝑝̂𝑝𝑟𝑟

2

2𝑚𝑚
+
𝑖𝑖𝑖𝑖
2𝑚𝑚

𝑝̂𝑝𝑟𝑟 ,
1
𝑟̂𝑟

+
𝐿𝐿2

2𝑚𝑚𝑟̂𝑟2
−
𝑘𝑘
 𝑟̂𝑟

+
𝑚𝑚𝑘𝑘2

2𝐿𝐿2

=
𝑝̂𝑝𝑟𝑟

2

2𝑚𝑚
+
𝐿𝐿2 + ℏ𝐿𝐿
2𝑚𝑚𝑟̂𝑟2

−
𝑘𝑘
 𝑟̂𝑟

+
𝑚𝑚𝑘𝑘2

2𝐿𝐿2
= �𝐻𝐻 − 𝐸𝐸𝑙𝑙

This is the  solution of the  hydrogen atom for a fixed angular momentum state , if we le t 𝐿𝐿 =
ℏ𝑙𝑙.

A simple way to determine planetary orbits
CSAAPT Fall meeting, October 19, 2024



So, the simplified treatment of the classical 
orbit also provides a neat connection to the 

quantum solution. 
Pretty cool. 

Thank you Born and Jordan!
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Thanks to

Leanne Doughty    Jason Tran
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