A simple way to determine planetary orbits CSAAPT Fall meeting, October 19, 2024

James Freericks, Department of Physics Georgetown University Work funded by the AFOSR and Georgetown

A simple approach to determining planetary orbits

Kepler's Elliptical Orbits

Quantum solutions

The conventional way to determine Kepler orbits is complicated. For example, we sketch how Goldstein does this.

Hamilton equation of motion: $\dot{r} =$ ̇ $\frac{p_r}{\sqrt{2}}$ \boldsymbol{m} and $\dot{p_r} = F_{eff} =$ \overline{a} L^2 $\frac{L^2}{mr^3} - \frac{k}{r^2}, \dot{\theta}$ \overline{a} = $\frac{L}{2}$ $\frac{L}{mr^2}$, and \dot{L} \overline{a} $= 0$

So, we have $\ddot{r} =$ ̈ L^2 $\frac{L^2}{m^2r^3} - \frac{k}{mr^2}$. Multiply by \dot{r} and integrate to yield: $\frac{1}{2}$ 2 $\dot{r}^2 = E - \frac{L^2}{2m^2}$ ̇ $\frac{L^2}{2m^2r^2} + \frac{k}{mr}$, with E the energy (arising as an integration constant).

Goldstein derivation

A simple way to determine planetary orbits CSAAPT Fall meeting, October 19, 2024

= $\frac{d}{dt}$ $d\theta$ $\frac{L}{2}$ $\frac{L}{mr^2}$, rearranging, we have 1 $2E - \frac{L^2}{m^2 r^2} + \frac{2k}{mr}$

We have
$$
\frac{mr^2}{L} d\theta = dt
$$
, so $\dot{r} = \sqrt{2E - \frac{L^2}{m^2 r^2} + \frac{2k}{mr}}$

$$
d\theta = dr \frac{L}{mr^2} \frac{2E}{\sqrt{2E}}
$$

Goldstein derivation (part II)

A simple way to determine planetary orbits CSAAPT Fall meeting, October 19, 2024

$$
\int_{\theta_0} d\theta = \int_{r_0} dr \frac{L}{mr^2} \frac{1}{\sqrt{2E - \frac{L^2}{m^2 r^2} + \frac{2k}{mr^2}}}
$$

$$
\theta - \theta_0 = -\arccos \frac{\frac{L^2}{mkr} - 1}{\sqrt{1 + \frac{2EL^2}{mk^2}}}
$$

So that

$$
\frac{1}{r} = \frac{mk}{L^2} \left(1 + \sqrt{1 + \frac{2EL^2}{mk^2} \cos(\theta - \theta_0)} \right)
$$

The idea for a simplification comes from an unlikely source: Born and Jordan's Elementare Quantenmechanik (1930)

A simple way to determine planetary orbits CSAAPT Fall meeting, October 19, 2024

 (5)

ELEMENTARE QUANTENMECHANIK M. BORN UND P. JORDAN

$$
\hat{q} = \frac{\partial H}{\partial p} = \frac{p}{\mu}, \quad \hat{p} = -\frac{\partial H}{\partial q} = -a\,q
$$

oder, mit der Abkürzung (2):

3a)
$$
\ddot{q} = - (2 \pi v_0)^2 q_+
$$

lauten wie in der klassischen Theorie. Definiert man "komplexe Amplituden"

(4)
$$
\begin{cases} b = C(p - 2\pi i r_0 \mu q), \\ b' = C(p + 2\pi i r_0 \mu q) \end{cases}
$$

mit einer vorläufig beliebigen Konstanten C. so gehen die Gleichungen (3) über in

$$
\dot{b} = -\ 2\pi\,i\,v_0\,b\,,\quad \ \dot{b}^{\,\dag} = 2\,\pi\,i\,v_0\,b^{\,\dag}.
$$

New derivation

Hamilton equation of motion: $\dot{r} =$ ̇ $\frac{p_r}{\sqrt{2}}$ \boldsymbol{m} and \vec{p}

> *A simple way to determine planetary orbits* CSAAPT Fall meeting, October 19, 2024

Define $A = p_r + \frac{\alpha}{r}$ $\boldsymbol{\varUpsilon}$ are decoupled:

$$
\dot{p}_r = F_{eff} = \frac{L^2}{mr^3} - \frac{k}{r^2}, \dot{\theta} = \frac{L}{mr^2}
$$
, and $\dot{L} = 0$

 $+ \beta$, then choose α and β so that the radial equations of motion

$$
\dot{A} = \dot{p}_r - \frac{\alpha}{r^2} \dot{r} = \frac{L^2}{mr^3} - \frac{k}{r^2} - \frac{\alpha}{mr^2} \quad p_r = -\frac{\alpha}{mr^2} \left(p_r - \frac{L^2}{\alpha r} + \frac{mk}{\alpha} \right)
$$

So that $\alpha = \pm iL$, $\beta = \pm i \frac{mk}{L}$, and $\dot{A} = \pm i \frac{L}{mr^2} A = \mp i \dot{\theta} A$. Then we have
 $A(\theta) = A_0 e^{i\theta}, \qquad A^*(\theta) = A_0^* e^{-i\theta}, \qquad \text{and } A(\theta) = p_r + \frac{iL}{r} - \frac{imk}{L}$

New derivation (part II)

A simple way to determine planetary orbits CSAAPT Fall meeting, October 19, 2024

$$
A(\theta) = A_0 e^{i\theta}, \qquad A^*(\theta) = A_0^* e^{-i\theta}, \qquad \text{and } A(\theta) = p_r + \frac{iL}{r} - \frac{imk}{L}
$$

If we set the constants at the point of closest approach r_0 we have $A_0 = i \left(\frac{L}{r_0} - \frac{mk}{L}\right)$

We remove p_r by taking the difference: $\frac{L}{r} - \frac{lm}{L}$ = 1 $\frac{1}{2} (A(\theta) - A^*(\theta)) = i$ Or

$$
\theta\big)\big) = i\left(\frac{L}{r_0} - \frac{mk}{L}\right)\cos(\theta - \theta_0)
$$

$$
\frac{1}{r} = \frac{mk}{L^2} + \left(\frac{1}{r_0}\right)
$$

$$
-\frac{mk}{L^2}\bigg)\cos(\theta-\theta_0)
$$

Using this approach of decoupling the differential equations is a much simpler derivation, requiring no complex integrations

We have $\frac{p_r^2(t)}{2m}$ $2m$ $+\frac{L^2}{2mr^2}-\frac{k}{r}$ $+\frac{mk^2}{2L^2}$ $2L^2$ = 1 $2m$ $A^*(t)A(t) =$

Energy

$$
|(t) = \frac{1}{2m} |A_0|^2 = \text{constant}
$$

So, energy is conserved, automatically in this approach

Relation to quantum mechanics

We found $A = p_r + \frac{l}{r} - \frac{lm}{L}$ and $A^* = p_r - \frac{l}{r}$ $\boldsymbol{\varUpsilon}$ $+\frac{l}{2}$ \overline{L} If we make them operators, with $[\hat{r}, \hat{p}_r] = i\hbar$, then ̂ ̂

> $\frac{1}{2m} +$ $2m\ddot{r}$ ̂

This is the solution of the hydrogen atom for a fixed angular momentum state, if we let $L =$ \hbar .

$$
\frac{1}{2m}\hat{A}^{\dagger}\hat{A} = \frac{1}{2m}\left(\hat{p}_r - \frac{iL}{\hat{r}} + \frac{imk}{L}\right)\left(\hat{p}_r + \frac{iL}{\hat{r}} - \frac{imk}{L}\right) = \frac{\hat{p}_r^2}{2m} + \frac{iL}{2m}\left[\hat{p}_r, \frac{1}{\hat{r}}\right] + \frac{L^2}{2m\hat{r}^2} - \frac{k}{\hat{r}} + \frac{mk^2}{2L^2}
$$

$$
= \frac{\hat{p}_r^2}{2m} + \frac{L^2 + \hbar L}{2m\hat{r}^2} - \frac{k}{\hat{r}} + \frac{mk^2}{2L^2} = \hat{H} - E_l
$$

So, the simplified treatment of the classical orbit also provides a neat connection to the quantum solution. Pretty cool. Thank you Born and Jordan!

Thanks to

Leanne Doughty Jason Tran

