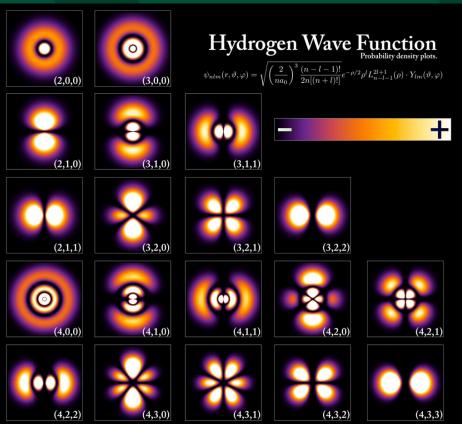


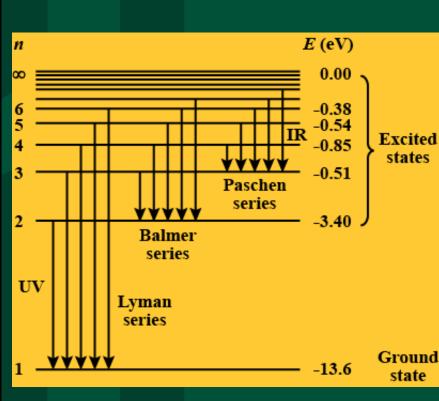
Quantum Concepts for High School and College

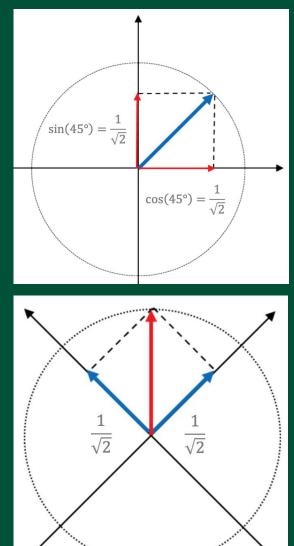
Jessica Rosenberg, Nancy Holincheck, Ben Dreyfus

Who does Industry Expect to Hire?

Hughes et al 2021, http://arxiv.org/abs/2109.03601


Quantum Science & Engineering Center


Proficiency level	Area (I)	Area (II)	Area (III)
A1 Awareness	Reproduce basic q.	Reproduce basic func-	Recognize potential of
	concepts & terminology	tionalities of a QT facet	QT Identify value of QT
A2 Literacy	Describe fundamental	Perform basic tasks on	Identify value of QT
	q. concepts	a QT facet	Quantum Science & Engineering Center
B1 Utilization	Apply quantum meth-	Modify/apply a QT	Classify available QT
	ods to problems	facet	applications/approaches
B2 Investigation	Analyze problems	Analyze performance,	Analyze QT market
	with quantum	improve QT	and opportunities / C2 \
C1 Specializa-	Refine and extend	Conceptualize inte-	Advise on QT appl.
tion	quantum methods	grated QT systems	selection or strategies
C2 Innovation	Develop innovative	Develop new QT facet	Develop and assess QT
	solutions		(product) strategies
	•		/ / B2
CONCEPTS	PHYSICAL		
AND	FOUNDATIONS		/ / B1 \ \ \
FOUNDATIONS	 OF QUANTUM TECHNOLOGIES 		(I) Quantum concepts
	•		A2
	QUANTUM A QUANTUM		
TECHNOLOGIES	COMPUTING COMMUNI-		
AND TECHNIQUES	AND CATION AND SIMULATION NETWORKS		
• rechniques	• SINGLATION • NETWORKS		B1 B1
	: :		
QUANTUM	QUANTUM O VALORISATION		
HARDWARE	SENSORS		
1 - C			
:	SYSTEMS		
1	•	-	Greinert et al. 2024, arXiv.2410.07692
۰.			


Quantum State:

A quantum state is a mathematical representation of a physical system, such as an atom, and provides the basis for processing quantum information.

Quantum Professional Learning and Curriculum Development for Secondary Teachers

- Recruited 14 chemistry, physics, and computer science computer science teachers from across the DC-MD-VA region
- Teachers engaged in professional learning around quantum concepts and applications
- Teachers worked in disciplinary groups to develop curricular resources to use in their teaching

Christina Cameron Bishop Ireton HS

2 10 150

Quantum in Chemistry

 Lesson Plan Find the electron game
 George Mason University's Quantum Science & Engineering Center's K-12 Quantum Initiative
 LEARNING OBJECTIVES
 SWBAT state that orbitals are 90% accurate with the location of an electron
 SWBAT relate quantum numbers with the types and shapes of orbitals of an atom.
 SWBAT explain families of elements, and the variation of orbital size and geometry will be related to periodic properties.

- SWBAT understands that orbitals are not orbits.

II. BACKGROUND INFO FOR TEACHERS (teacher notes)

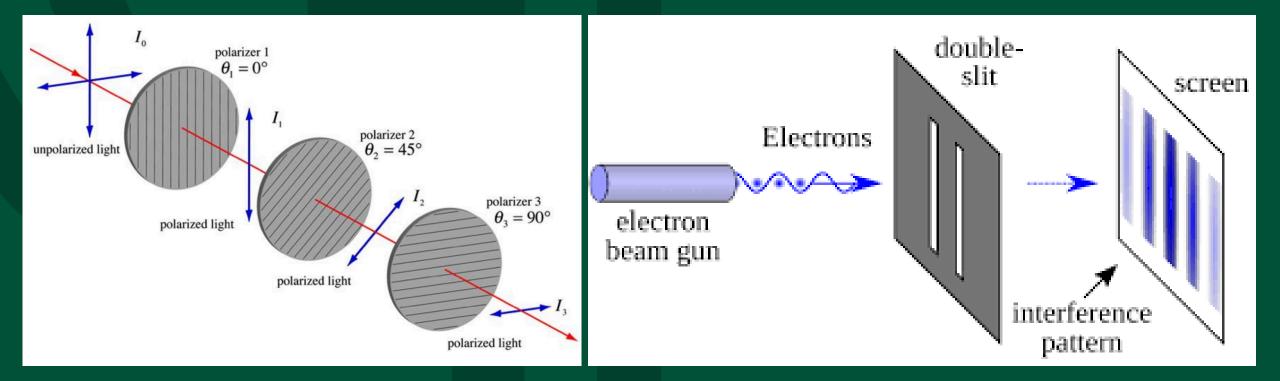
Focus of the Lesson

Students will use their understanding of quantum numbers, orbitals and subshells to predict where the electron(ball) is hidden in the grid.

Quantum concepts

- The quantum number (n) relates to the energy level of the atomic (row of the periodic table)

Connect with the curriculum


Students explore and are able to draw the BOHR model for various elements, by exploring how the quantum model (and numbers) relate, they will be able to extend their thinking into producing and understanding how quantum models are related.

III. CONNECT TO STANDARDS

HS-PS1-1

Matter and Its Interactions. Students who demonstrate understanding can: Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms.

Quantum Measurement How do we know... quantum edition

GEORGE MASON UNIVERSITY_®

Let's play another game! Gomoku / Five-in-a-Row - Quantum Entanglement Edition

Object of the Game

- Be the first player to achieve five stones of one's own color in a row, wherein said row may be vertical, horizontal, or diagonal.
- For every five stones placed by a single player, the player must entangle at least twice.

Challenge:

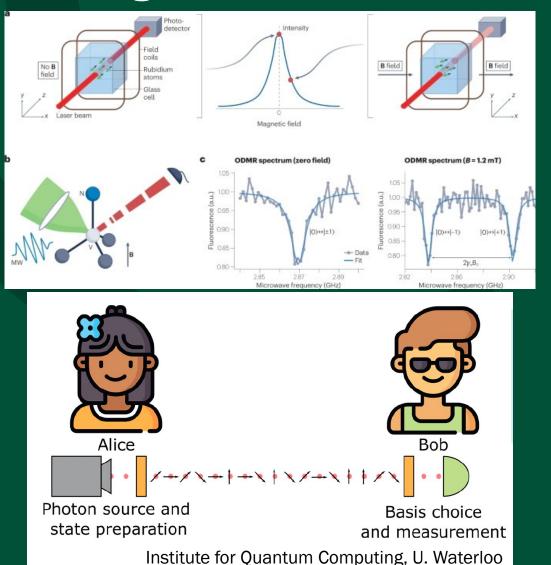
• Combine both versions of the game! All rules apply! Each turn will need both a decision about measurement and a decision about entanglement. Good luck!

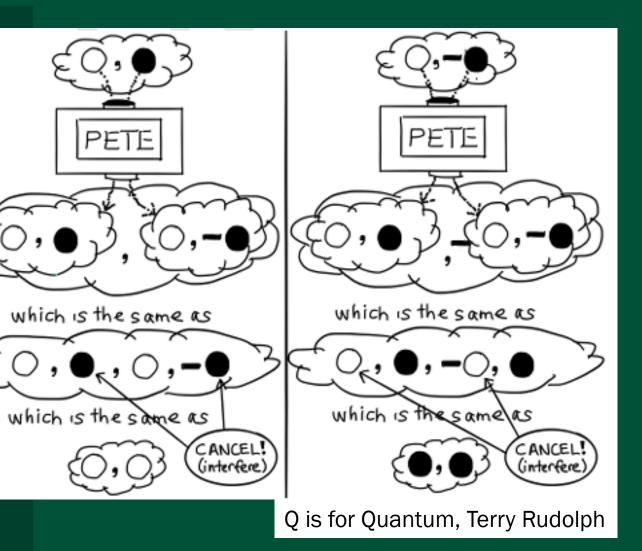
Photoelectric effect: Demonstration

Guiding question: What is (are) the factor(s) affecting the photoelectric effect?

Demonstration:

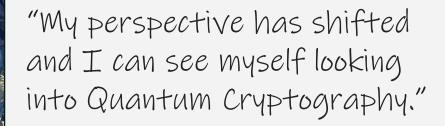
Different types of light will be used on the top plate of a negatively charged electroscope:


<u>White light</u> (with different intensities), <u>UV-A light</u> (Black light), <u>UV-C light</u> (germicide light)


For each sources of light, observe the motion of the arm of the charged electroscope, if any.

"Light falls on a zinc plate" Ultra viole What your teacher is thinking What you are thinking

Quantum Applications: Sensing, Communications, Computing



Quantum Immersion for High School Students

2 weeks online learning key concepts and about careers and applications

1 week immersive career-focused in-person

"It has deepened my interest in STEM"

"I feel like I could incorporate quantum into medicine which is really exciting."

Why do we care... quantum edition

Attempts at Quantum Supremacy in the Analysis of Particle Systems **Detection of Dark Matter with Quantum Sensing**

Improving Awareness of Space Debris through

Personalizing Cancer Quantum Teleportanin and its Treatment with n Machine rning Quantum Testbeds for Quantum Learning Algorithms Machine Learning **Quantum Machine** Learning

QRYPT HAVEN: A Post-Quantum Cryptography Company

Quantum Internet and Future Uses Quantum Corners: Improving Emergency **Response with Smart Traffic** Management and Quantum Sensors

Sustainable Climate: Taking Action with Renewable Energy

Conclusions

- Students need to understand how we know about quantum
- For the most part, a first discussion of the technologies does not require a lot of math
- Students need to see how quantum science is being applied to communications, sensing, and computing
- Students can think about the applications of these technologies to important problems
- Digging into a question that is interesting to them gets students more engaged and interested

