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There are many issues with relativistic two-
body equations – both classical and quantum 
mechanical.

Classical
- How do we deal with each particle having its 

own proper time?
- There is no simple analog of the center of 

mass.
- Jordan-Currie-Sudarshan no-go theorem 

(Rev. Mod. Phys. 35, 350 (1963). [Classical 
Hamiltonian formalism + Lorentz invariance 
 no interaction]

Quantum
- JCS theorem does not apply (QFT) but the 

other two issues remain.  We use the center 
of momentum frame, but the problem of the 
relative time remains.

- In addition, there is a new problem – particle 
creation and annihilation.  If the particle 
number is not fixed, how can we restrict 
ourselves to a two-body equation?



Since we live in a quantum, and not classical, 
world, I will now restrict the discussion to the 
quantum case.

The last difficulty in the quantum case is often 
viewed as the most serious and can lead to a 
complete disregard of relativistic quantum 
mechanics (as opposed to quantum field 
theory).  For example, I note the following 
quote from Weinberg:

“…relativistic wave mechanics, in the sense of 
a relativistic quantum theory of a fixed 
number of particles, is an impossibility.”
(The Quantum Theory of Fields, vol. I, p. 3)

So, perhaps it is fruitless to seek a simple 
wave equation of the nonrelativistic form, and 
we must only use field theory.
This may be true ideally . . .



But . . .
It is very difficult to treat bound states in QFT.  
The most standard QFT tool for bound states 
is the Bethe-Salpeter equation.  But this itself 
has many problems: mathematical difficulty, 
uncertain approximations, interpretation of 
some solutions. (Quasipotential approaches 
ameliorate some of these issues and have been 
quite successful, but I will say no more about 
this  – there are much more qualified people 
here at CEBAF to address this topic.)

My attitude: field theory is the theory for 
particle physics.  However, as a practical 
matter, its treatment of bound states is not 
completely satisfactory.

There is room for a relativistic quantum 
mechanical treatment of the two-body 
problem.  Even if we lose a little bit in rigor, it 
is helpful to have an equation which is more 
manageable and perhaps, calling on our 
experience with nonrelativistic quantum 
mechanics, somewhat more intuitively 
intelligible. 



I will consider two approaches:
- two-body Dirac equation with constraint 

dynamics
- the Breit equation with instantaneous 

interaction
I will focus on the latter, but let me first say a 
few words about the former.  It is motivated 
by Dirac’s theory of constraints.  Dirac’s 
concern in this theory is more fundamental 
than the simple constraints encountered in 
elementary Lagrangian mechanics.  A starting 
resource for this theory is 
Dirac, Lectures on Quantum Mechanics 
(Yeshiva University, New York, 1964)
Applications of this to the Dirac two-body 
problem has been treated in many papers by 
Crater, Van Alstine and collaborators – for 
example:
Crater, Horace W; Van Alstine, Peter , "Two-body Dirac 
equations“, Annals of Physics 148, 57 (1983)
The main idea is the use of constraints to 
eliminate the relative time and relative energy 
in the center of momentum frame. 



Second approach – Breit (two-body Dirac) with 
instantaneous potential.
(Malenfant, Phys. Rev. D 38, 3295 (1988), but 
with some differences)
This approach suffers from one serious defect: it is 
not covariant.  Therefore, it is not truly relativistic 
– it is only semi-relativistic.  However, it does 
incorporate relativistic kinematics and spin, and 
reduces to the Dirac equation in the infinite limit 
of the mass of one of the particles.
The two-body Dirac equation we will study:

[(�⃗�𝛼1 � 𝑝𝑝 + 𝛽𝛽1(𝑚𝑚1 + 𝑆𝑆1))𝜇𝜇𝜇𝜇𝛿𝛿𝜌𝜌𝜌𝜌
+ 𝛿𝛿𝜇𝜇𝜇𝜇�

�
−�⃗�𝛼2 � 𝑝𝑝 + 𝛽𝛽2 𝑚𝑚2 + 𝑆𝑆2 )𝜌𝜌𝜌𝜌

+ 𝑉𝑉 𝑟𝑟 𝛿𝛿𝜇𝜇𝜇𝜇𝛿𝛿𝜌𝜌𝜌𝜌 Ψ𝜇𝜇𝜌𝜌 = 𝐸𝐸Ψ𝜇𝜇𝜌𝜌 .
Here, Ψ𝜇𝜇𝜇𝜇 is a 4x4 matrix eigenvector:

Ψ𝜇𝜇𝜇𝜇 =

Ψ11 Ψ12
Ψ21 Ψ22

Ψ13 Ψ14
Ψ23 Ψ24

Ψ31 Ψ32
Ψ41 Ψ42

Ψ33 Ψ34
Ψ43 Ψ44

The use of this matrix form is a matter of 
convenience.  It is easier than using a 16-
component column vector. Also, the division by 
quadrants is meaningful.  



Some additional comments about the equation:
- V is a Lorentz vector potential and S is a 

Lorentz scalar potential.  This distinction can 
be clarified by considering the (one-body) 
Dirac equation:

�⃗�𝛼 � �⃗�𝑝 + β 𝑚𝑚 + 𝑆𝑆 + 𝑉𝑉 𝜓𝜓 = 𝐸𝐸𝜓𝜓
Note that S enters in the same way as the             
scalar m and V like the energy, which is the 
zero component of a Lorentz vector.      

- Although we are making the instantaneous 
approximation, this is still an improvement 
over some other potential model approaches –
for example, the spinless Salpeter equation, 
which uses a Schrödinger-type equation with 
relativistic kinematics:

�⃗�𝑝2 + 𝑚𝑚1
2 + �⃗�𝑝2 + 𝑚𝑚2

2 + 𝑉𝑉 𝜓𝜓 = 𝐸𝐸𝜓𝜓 .
(Stanley & Robson, Phys. Rev. D 21, 3180 (1980))
Since there is no spin in this equation, it 
must be put in by hand – usually by 
including spin-spin, spin-orbit, and tensor 
terms to the potential, in addition to the 
central term.  The mass dependence of these 
terms is often standard, but some 
parametrization may be allowed.  



In contrast, the two-body Dirac has these spin 
dependencies included automatically.
- Although we are dealing with a two-particle 

equation, we can consider it as the two-
particle sector in Fock (Vladimir Fock, 1898-
1974) space.  We can then, if we choose, 
allow coupling to a four-component sector 
due to pair creation.  All we need is a pair-
production operator to provide the coupling -
- but that is the subject for a different talk.

Returning to our equation and writing out the 
separate equation for each component, we 
obtain

�⃗�𝜎 � �⃗�𝑝 Ψ31
Ψ41 1

− �⃗�𝜎 � �⃗�𝑝 Ψ13
Ψ14 1

+ 𝑉𝑉Ψ11
= (𝐸𝐸 −𝑚𝑚1 − 𝑆𝑆1 − 𝑚𝑚2 − 𝑆𝑆2)Ψ11

plus 15 other similar equations.  In this 
equation, �⃗�𝜎 is the standard 2 x 2 Pauli matrix 
and the subscript on the square bracket means 
the upper (“1”) component of the vector 
obtained by the matrix multiplication inside 
the bracket.



Now we want to consider special cases.  We 
are interested in quarkonium.  So 𝑚𝑚1 = 𝑚𝑚2
and we will take 𝑆𝑆1 = 𝑆𝑆2 ≡ 𝑆𝑆/2.  The lowest-
lying state should be the pseudoscalar 
0−(01𝑆𝑆 − spin 0, orbital L = 0, total J = 0) state.  
The spin-angular form of the eigenvector 
matrix is

Ψ =

0 𝑓𝑓
−𝑓𝑓 0

sin 𝜃𝜃𝑒𝑒−𝑖𝑖𝑖𝑖𝑔𝑔1 − cos𝜃𝜃𝑔𝑔1
− cos𝜃𝜃𝑔𝑔1 − sin𝜃𝜃𝑒𝑒𝑖𝑖𝑖𝑖𝑔𝑔1

sin𝜃𝜃𝑒𝑒−𝑖𝑖𝑖𝑖𝑔𝑔2 − cos𝜃𝜃𝑔𝑔2
− cos𝜃𝜃𝑔𝑔2 − sin𝜃𝜃𝑒𝑒𝑖𝑖𝑖𝑖𝑔𝑔2

0 ℎ
−ℎ 0

,

where 𝑓𝑓,𝑔𝑔1,𝑔𝑔2, and ℎ are all functions of r. 
The top left and bottom right quadrants are 
spin-singlet states written in matrix form, the 
upper right and lower left quadrants are spin 1 
and orbital angular momentum 1 coupled to J 
= 0.  



Returning to the component equations referred 
to above, we can then use
�⃗�𝜎 � �⃗�𝑝 = −𝑖𝑖�⃗�𝜎 � ∇

= −𝑖𝑖�⃗�𝜎 � �̂�𝑟
𝜕𝜕
𝜕𝜕𝑟𝑟

+ �𝜃𝜃
1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝜃𝜃

+ �𝜑𝜑
1

𝑟𝑟 sin𝜃𝜃
𝜕𝜕
𝜕𝜕𝜑𝜑

.

Now, with the expressions for the spherical 
unit vectors in terms of the Cartesian ones and 
the standard forms of the Pauli matrices 
𝜎𝜎𝑥𝑥 ,𝜎𝜎𝑦𝑦,𝜎𝜎𝑧𝑧, we get

�⃗�𝜎 � �⃗�𝑝
= −𝑖𝑖 cos𝜃𝜃 sin𝜃𝜃𝑒𝑒−𝑖𝑖𝑖𝑖

sin𝜃𝜃𝑒𝑒𝑖𝑖𝑖𝑖 − cos𝜃𝜃
𝜕𝜕
𝜕𝜕𝑟𝑟

−
𝑖𝑖
𝑟𝑟

− sin𝜃𝜃 cos𝜃𝜃𝑒𝑒−𝑖𝑖𝑖𝑖
cos𝜃𝜃𝑒𝑒𝑖𝑖𝑖𝑖 sin𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃

−
𝑖𝑖

𝑟𝑟 sin𝜃𝜃
0 −𝑖𝑖𝑒𝑒−𝑖𝑖𝑖𝑖
𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖 0

𝜕𝜕
𝜕𝜕𝜑𝜑

We can now use this expression and the spin-
angular form of the matrix eigenvector given 
above to obtain the equations for the radial 
functions:



𝑖𝑖
𝑑𝑑
𝑑𝑑𝑟𝑟 𝑔𝑔1 + 𝑔𝑔2 +

2𝑖𝑖
𝑟𝑟 𝑔𝑔1 + 𝑔𝑔2 + 𝑉𝑉𝑓𝑓 = 𝐸𝐸 −𝑚𝑚1 −𝑚𝑚2 − 𝑆𝑆 𝑓𝑓

𝑖𝑖
𝑑𝑑𝑓𝑓
𝑑𝑑𝑟𝑟 + 𝑖𝑖

𝑑𝑑ℎ
𝑑𝑑𝑟𝑟 + 𝑉𝑉𝑔𝑔1 = (𝐸𝐸 −𝑚𝑚1 + 𝑚𝑚2)𝑔𝑔1

𝑖𝑖
𝑑𝑑𝑓𝑓
𝑑𝑑𝑟𝑟

+ 𝑖𝑖
𝑑𝑑ℎ
𝑑𝑑𝑟𝑟

+ 𝑉𝑉𝑔𝑔2 = (𝐸𝐸 + 𝑚𝑚1 −𝑚𝑚2)𝑔𝑔2

𝑖𝑖
𝑑𝑑
𝑑𝑑𝑟𝑟 𝑔𝑔1 + 𝑔𝑔2 +

2𝑖𝑖
𝑟𝑟 𝑔𝑔1 + 𝑔𝑔2 + 𝑉𝑉ℎ = 𝐸𝐸 + 𝑚𝑚1 + 𝑚𝑚2 + 𝑆𝑆 ℎ

For quarkonium, 𝑚𝑚1 = 𝑚𝑚2 ≡ 𝑚𝑚 and then
𝑔𝑔1 = 𝑔𝑔2 ≡ 𝑔𝑔

and
𝐸𝐸 − 2𝑚𝑚 − 𝑆𝑆 − 𝑉𝑉 𝑓𝑓 = 𝐸𝐸 + 2𝑚𝑚 + 𝑆𝑆 − 𝑉𝑉 ℎ .

So, we are left with only two equations:

2𝑖𝑖
𝑑𝑑𝑔𝑔
𝑑𝑑𝑟𝑟

+
4𝑖𝑖
𝑟𝑟
𝑔𝑔 + 𝑉𝑉𝑓𝑓 = 𝐸𝐸 − 2𝑚𝑚 − 𝑆𝑆 𝑓𝑓

𝑖𝑖
𝑑𝑑𝑓𝑓
𝑑𝑑𝑟𝑟

+ 𝑖𝑖
𝑑𝑑
𝑑𝑑𝑟𝑟

𝜆𝜆𝑓𝑓 + 𝑉𝑉𝑔𝑔 = 𝐸𝐸𝑔𝑔



where we have taken

ℎ = 𝜆𝜆𝑓𝑓 =
𝐸𝐸 − 2𝑚𝑚 − 𝑆𝑆 − 𝑉𝑉
𝐸𝐸 + 2𝑚𝑚 + 𝑆𝑆 − 𝑉𝑉

𝑓𝑓 .

To make the equations real, we take g  ig and we 
also use reduced radial wave functions u and v, 
defined by f = u/r , g = v/r.  This gives

−2
𝑑𝑑𝑑𝑑
𝑑𝑑𝑟𝑟 − 2

𝑑𝑑
𝑟𝑟 + 𝑉𝑉𝑉𝑉 = 𝐸𝐸 − 2𝑚𝑚 − 𝑆𝑆 𝑉𝑉

1 + 𝜆𝜆
𝑑𝑑𝑉𝑉
𝑑𝑑𝑟𝑟 − 1 + 𝜆𝜆

𝑉𝑉
𝑟𝑟 +

𝑑𝑑𝜆𝜆
𝑑𝑑𝑟𝑟 𝑉𝑉 + 𝑉𝑉𝑑𝑑 = 𝐸𝐸𝑑𝑑 .

We will now apply this to the 0− state of 
charmonium, 𝜂𝜂𝑐𝑐.  We will use the Cornell potential 
(Eichten et al., Phys. Rev. Lett. 34, 369 (1975))

−
𝛼𝛼
𝑟𝑟 + 𝛽𝛽𝑟𝑟

But we will choose the vector potential to be
𝑉𝑉 = −

𝛼𝛼
𝑟𝑟 + 𝛽𝛽𝑉𝑉𝑟𝑟

and the scalar potential to be
𝑆𝑆 = 𝛽𝛽𝑆𝑆𝑟𝑟 .

This will allow us to adjust the vector-scalar mix 
in the linear potential.  



The two differential equations are then solved 
numerically.  With the following choice of 
parameters: 

𝑚𝑚 = 1.2 GeV,𝛼𝛼 = 0.29,𝛽𝛽𝑆𝑆 = 𝛽𝛽𝑉𝑉 = 0.08 GeV2,
we obtain a bound state at E = 2.876 GeV.  
The experimental value is 2.983 GeV.  
We are interested in the effect of the vector-
scalar mix in the linear potential on bound 
states.  There are a number of reasons for 
believing that we will not have bound states if 
the linear potential is pure vector.  Our 
analysis is that we must have at least a 50/50 
mix.  
Summary data:

𝛽𝛽𝑆𝑆 𝛽𝛽𝑉𝑉 Energy (GeV) Comment

0 0.16 2.901 Quasi-bound

0.04 0.12 2.888 Quasi-bound

0.08 0.08 2.876 Bound

0.12 0.04 2.865 Bound

0.16 0 2.855 Bound



Why are the states with 𝛽𝛽𝑉𝑉 > 𝛽𝛽𝑆𝑆only quasi-
bound?  The scalar potential lowers the 
negative-energy states and the vector raises 
them.  If the vector is larger than the scalar, it 
can raise them to the energy of the quasi-
bound state where they can mix with this state.
This is in agreement with previous work on 
the one-body Dirac equation.  
(“The linear potential and the Dirac equation,” 
arXiv:2108.0593 [quant-ph], 12 Aug 2021).



Application to the J = 1 state.
This will allow us to treat the famous J/ψ
state at 3097 MeV.  One might think this 
would not be too much more difficult than the 
J = 0 case, but, in fact, it is considerably more 
complicated.  This is due to the fact that one 
must include both  L = 0, S = 1 and  L = 2, S = 
1 coupled to J = 1 components in the upper-
upper and lower-lower parts of the matrix 
eigenfunction.  The matrix is now

3𝑒𝑒−𝑖𝑖𝑖𝑖 sin𝜃𝜃 cos𝜃𝜃𝑓𝑓2 𝑓𝑓𝑜𝑜 − (3cos2𝜃𝜃 − 1)𝑓𝑓2
𝑓𝑓0 − (3cos2𝜃𝜃 − 1)𝑓𝑓2 −3𝑒𝑒𝑖𝑖𝑖𝑖 sin𝜃𝜃 cos𝜃𝜃𝑓𝑓2

sin𝜃𝜃𝑒𝑒−𝑖𝑖𝑖𝑖𝑔𝑔1 cos𝜃𝜃 𝑔𝑔1′

− cos𝜃𝜃 𝑔𝑔1′ sin𝜃𝜃𝑒𝑒𝑖𝑖𝑖𝑖𝑔𝑔1
sin𝜃𝜃𝑒𝑒−𝑖𝑖𝑖𝑖𝑔𝑔2 cos𝜃𝜃𝑔𝑔2′

− cos𝜃𝜃𝑔𝑔2′ sin𝜃𝜃𝑒𝑒1𝑖𝑖𝑔𝑔2
−3𝑒𝑒𝑖𝑖𝑖𝑖 sin𝜃𝜃 cos𝜃𝜃ℎ2 ℎ0 + (3cos2𝜃𝜃 − 1)ℎ2
ℎ0 + (3cos2𝜃𝜃 − 1)ℎ2 3𝑒𝑒𝑖𝑖𝑖𝑖 sin𝜃𝜃 cos𝜃𝜃ℎ2

It is interesting that we need to include the L = 
2 component; in the nonrelativistic treatment, 
we must use a tensor potential to induce this 
mixing.  Here, this is included in the equation 
itself.

Proceeding in the same fashion as in the 
pseudoscalar case results in six first-order 
differential equations.  With some 
manipulation of these a pair of mixed second-
order differential equations can be obtained.  
The solution of these is ongoing.



Appendix I: theory of constraints
To give an example which is simple albeit 
only marginally related to the quantum 
problem, consider the Lagrangian for a 
relativistic free particle:

𝐿𝐿 = 𝑚𝑚 𝑔𝑔𝜇𝜇𝜇𝜇�̇�𝑥𝜇𝜇�̇�𝑥𝜇𝜇 , where �̇�𝑥𝜇𝜇 =
𝑑𝑑𝑥𝑥𝜇𝜇

𝑑𝑑𝜏𝜏
Then

𝑝𝑝𝜇𝜇 =
𝜕𝜕𝐿𝐿

𝜕𝜕( ⁄𝑑𝑑𝑥𝑥𝜇𝜇 𝑑𝑑𝜏𝜏)
=

𝑚𝑚
𝑔𝑔𝜇𝜇𝜇𝜇�̇�𝑥𝜇𝜇�̇�𝑥𝜇𝜇

𝑔𝑔𝜇𝜇𝜇𝜇
𝑑𝑑𝑥𝑥𝜇𝜇

𝑑𝑑𝜏𝜏
,

and we note that this satisfies
𝑝𝑝𝜇𝜇𝑝𝑝𝜇𝜇 = 𝑚𝑚2 .

But
𝐻𝐻 = 𝑝𝑝𝜇𝜇�̇�𝑥𝜇𝜇 − 𝐿𝐿 = 0 .

Dirac tell us that in this case we must take note 
of the constraint

𝑔𝑔 𝑥𝑥,𝑝𝑝 = 𝑝𝑝2 −𝑚𝑚2 = 0
and take for our Hamiltonian

𝐻𝐻′ = 𝐻𝐻 + 𝜆𝜆𝑔𝑔 = 𝜆𝜆 𝑝𝑝2 − 𝑚𝑚2 .



Appendix II: matrix form of coupled spin states
For two particles,

⟩|00 =
1
2
𝛼𝛼1𝛽𝛽2 − 𝛽𝛽1𝛼𝛼2

⟩|1 − 1 = 𝛽𝛽1𝛽𝛽2
⟩|10 =

1
2
𝛼𝛼1𝛽𝛽2 + 𝛽𝛽1𝛼𝛼2

⟩|11 = 𝛼𝛼1𝛼𝛼2
These can be written as direct products – using for 
example

𝛼𝛼1𝛽𝛽2 = 1
0 ⊗ 0

1 =
1 0

1
0 0

1

=
0
1
0
0

to get

⟩|00 =
1
2

0
1
−1
0

⟩|1 − 1 =
0
0
0
1

⟩|10 =
1
2

0
1
1
0

⟩|11 =
1
0
0
0

(This is also called a Kronecker product, a special case of a 
tensor product.)
Then operators must also be written as direct products:

𝑆𝑆𝑧𝑧 = 𝑆𝑆1𝑧𝑧 ⊗ 12 + 11 ⊗ 𝑆𝑆2𝑧𝑧
and so forth.



But there is another way to write the tensor 
product – as a matrix, the often-called outer 
product.  For 𝜒𝜒1 = 𝑎𝑎

𝑏𝑏 and 𝜒𝜒2 =
𝛼𝛼
𝛽𝛽 , we can 

take
𝜒𝜒1 ⊗ 𝜒𝜒2 = 𝜒𝜒1𝜒𝜒2𝑇𝑇

= 𝑎𝑎
𝑏𝑏 𝛼𝛼 𝛽𝛽

= 𝑎𝑎𝛼𝛼 𝑎𝑎𝛽𝛽
𝑏𝑏𝛼𝛼 𝑏𝑏𝛽𝛽

This is sometimes called the outer product.
In this notation,

⟩|00 =
1
2

0 1
−1 0 , etc.

If we write the Kronecker product as ⊗𝐾𝐾 and 
the outer product as ⊗𝑂𝑂 and A and B are two 2 
x 2 matrices,

[ 𝐴𝐴⊗𝐾𝐾 𝐵𝐵 𝜒𝜒1 ⊗𝐾𝐾 𝜒𝜒2 ] 𝐴𝐴𝜒𝜒1 ⊗𝑂𝑂 𝜒𝜒2𝐵𝐵𝑇𝑇 ,

where the right-hand side is just matrix 
multiplication,



Appendix III: The 16 equations
Upper-upper:
�⃗�𝜎 � 𝑝𝑝 Ψ31

Ψ41 1
− �⃗�𝜎 � 𝑝𝑝 Ψ13

Ψ14 1
+ 𝑉𝑉Ψ11 = 𝜖𝜖Ψ11

�⃗�𝜎 � 𝑝𝑝 Ψ32
Ψ42 1

− �⃗�𝜎 � 𝑝𝑝 Ψ13
Ψ14 2

+ 𝑉𝑉Ψ12 = 𝜖𝜖Ψ12

�⃗�𝜎 � 𝑝𝑝 Ψ31
Ψ41 2

− �⃗�𝜎 � 𝑝𝑝 Ψ23
Ψ24 1

+ 𝑉𝑉Ψ21 = 𝜖𝜖Ψ21

�⃗�𝜎 � 𝑝𝑝 Ψ32
Ψ42 2

− �⃗�𝜎 � 𝑝𝑝 Ψ23
Ψ24 2

+ 𝑉𝑉Ψ22 = 𝜖𝜖Ψ22

Upper-lower:
�⃗�𝜎 � 𝑝𝑝 Ψ33

Ψ43 1
− �⃗�𝜎 � 𝑝𝑝 Ψ11

Ψ12 1
+ 𝑉𝑉Ψ13 = 𝜖𝜖 + 2𝑚𝑚2 Ψ13

�⃗�𝜎 � 𝑝𝑝 Ψ34
Ψ44 1

− �⃗�𝜎 � 𝑝𝑝 Ψ11
Ψ12 2

+ 𝑉𝑉Ψ14 = (𝜖𝜖 + 2𝑚𝑚2)Ψ14

�⃗�𝜎 � 𝑝𝑝 Ψ33
Ψ43 2

− �⃗�𝜎 � 𝑝𝑝 Ψ21
Ψ22 1

+ 𝑉𝑉Ψ23 = 𝜖𝜖 + 2𝑚𝑚2 Ψ23

�⃗�𝜎 � 𝑝𝑝 Ψ34
Ψ44 2

− �⃗�𝜎 � 𝑝𝑝 Ψ21
Ψ22 2

+ 𝑉𝑉Ψ24 = 𝜖𝜖 + 2𝑚𝑚2 Ψ24

Lower-upper:
�⃗�𝜎 � 𝑝𝑝 Ψ11

Ψ21 1
− �⃗�𝜎 � 𝑝𝑝 Ψ33

Ψ34 1
+ 𝑉𝑉Ψ31 = 𝜖𝜖 + 2𝑚𝑚1 Ψ31

�⃗�𝜎 � 𝑝𝑝 Ψ12
Ψ22 1

− �⃗�𝜎 � 𝑝𝑝 Ψ33
Ψ34 2

+ 𝑉𝑉Ψ32 = 𝜖𝜖 + 2𝑚𝑚1 Ψ32

�⃗�𝜎 � 𝑝𝑝 Ψ11
Ψ21 2

− �⃗�𝜎 � 𝑝𝑝 Ψ43
Ψ44 1

+ 𝑉𝑉Ψ41 = 𝜖𝜖 + 2𝑚𝑚1 Ψ41

�⃗�𝜎 � 𝑝𝑝 Ψ12
Ψ22 2

− �⃗�𝜎 � 𝑝𝑝 Ψ43
Ψ44 2

+ 𝑉𝑉Ψ42 = 𝜖𝜖 + 2𝑚𝑚1 Ψ42

Lower-lower:
�⃗�𝜎 � 𝑝𝑝 Ψ13

Ψ23 1
− �⃗�𝜎 � 𝑝𝑝 Ψ31

Ψ32 1
+ 𝑉𝑉Ψ33 = 𝜖𝜖 + 2𝑚𝑚1 + 2𝑚𝑚2 Ψ33

�⃗�𝜎 � 𝑝𝑝 Ψ14
Ψ24 1

− �⃗�𝜎 � 𝑝𝑝 Ψ31
Ψ32 2

+ 𝑉𝑉Ψ34 = 𝜖𝜖 + 2𝑚𝑚1 + 2𝑚𝑚2 Ψ34

�⃗�𝜎 � 𝑝𝑝 Ψ13
Ψ23 2

− �⃗�𝜎 � 𝑝𝑝 Ψ41
Ψ42 1

+ 𝑉𝑉Ψ43 = 𝜖𝜖 + 2𝑚𝑚1 + 2𝑚𝑚2 Ψ43

�⃗�𝜎 � 𝑝𝑝 Ψ14
Ψ24 2

− �⃗�𝜎 � 𝑝𝑝 Ψ41
Ψ42 2

+ 𝑉𝑉Ψ44 = 𝜖𝜖 + 2𝑚𝑚1 + 2𝑚𝑚2 Ψ44
𝜖𝜖 = 𝐸𝐸 −𝑚𝑚1 −𝑚𝑚2
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