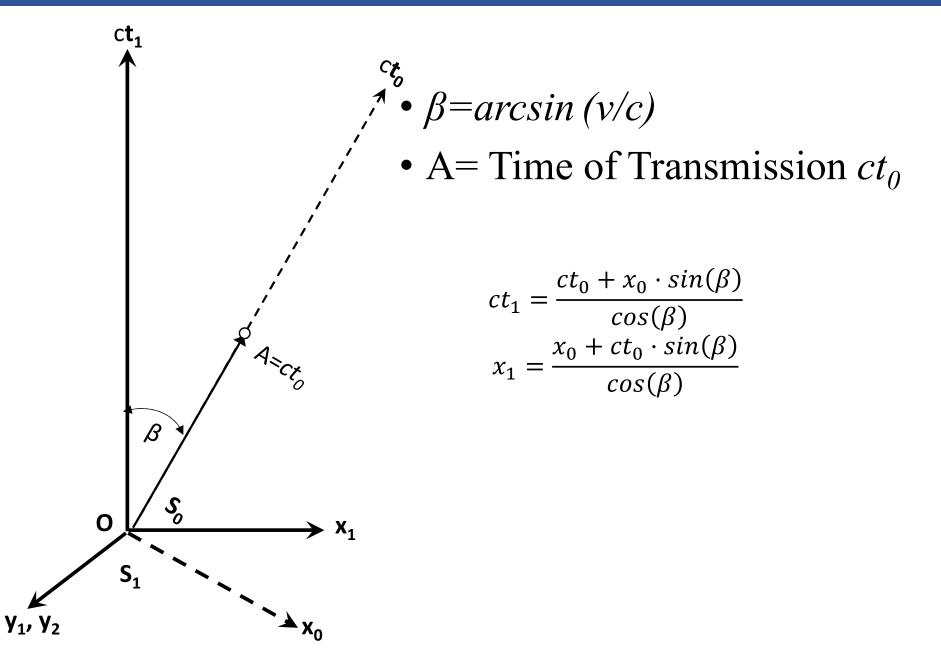
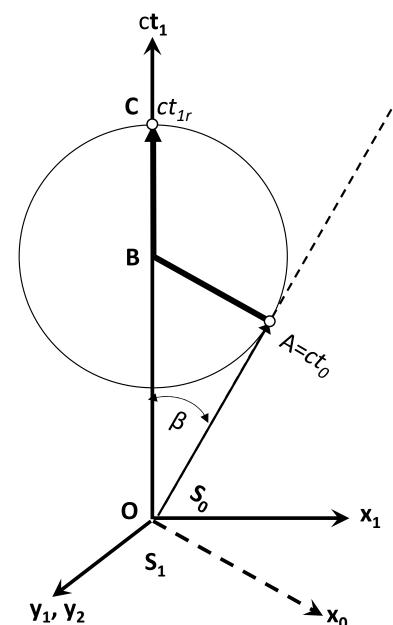

Riding on a Light Beam

Acceleration and Mass Rise

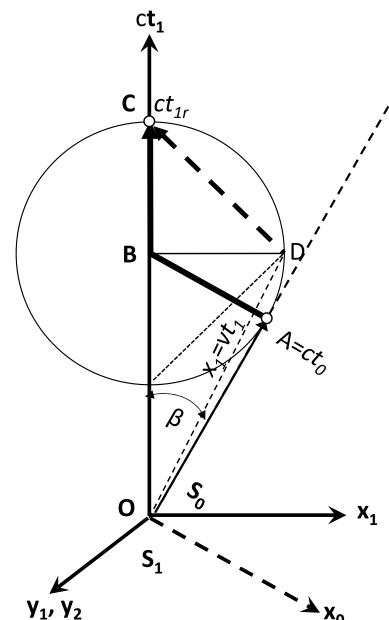
Lewis F. McIntyre CS-AAPT Spring Meeting April 1, 2023


mcintyrel@verizon.net

OUTLINE

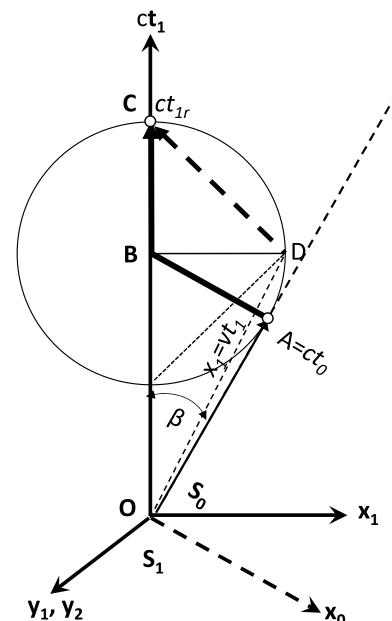


- REVIEW OF VELOCITY TRIANGLE
- TIMELINE OF AN ACCELERATING BODY S₀
- UNACCELERATED S₁'s MEASUREMENT OF ACCELERATED S₀'s WORLDLINE
- SMALL ANGLE APPROXIMATION GIVES CLASSICAL LAWS FOR ACCELERATION
- S₁'s MEASUREMENT OF S₀ CAUSES OBSERVED RELATIVISTIC MASS RISE



- A= Time of Transmission ct_0
- Doppler Shift A along ABC, to C=Time of Receipt

$$ct_{1r} = ct_0 \frac{1 + sin(\beta)}{cos(\beta)}$$



• $\beta = \arcsin(v/c)$

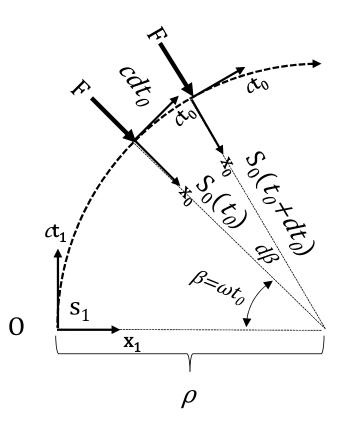
- A= Time of Transmission ct_0
- Doppler Shift A along ABC, to C=Time of Observation
- D=Measurement
 - Simultaneous with Event A
 - OB= $ct_1 = ct_0/cos(\beta)$
 - BD= x_1 = ct_0 · $sin(\beta)/cos(\beta)$
 - $v = x_1/ct_1 = c \cdot sin(\beta)$

Ct S • $\beta = \arcsin(v/c)$

- A= Time of Transmission ct_0
- Doppler Shift A along ABC, to C=Time of Observation
- D is Lorentz Transform of A

$$ct_{1} = \frac{ct_{0} + x_{0} \cdot sin(\beta)}{cos(\beta)}$$
$$x_{1} = \frac{x_{0} + ct_{0} \cdot sin(\beta)}{cos(\beta)}$$

TIMELINE OF ACCELERATING BODY

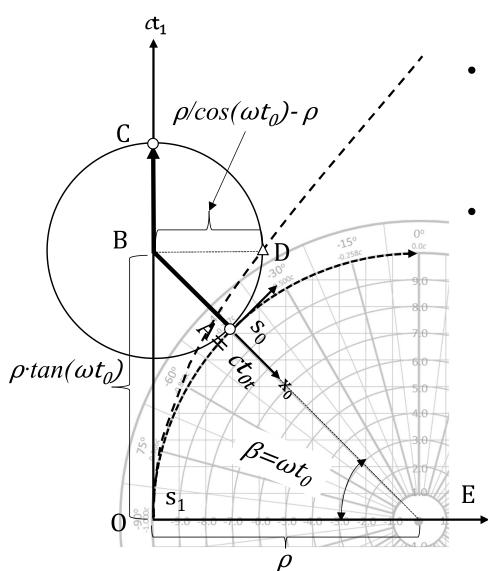


- CONSTANT CENTRIPETAL FORCE *F* APPLIED NORMAL TO S_o TIMELINE in $+x_0$ DIRECTION
- S_0 OBSERVES CONSTANT ACCELERATION
- CONSTANT VELOCITY ANGLE CHANGE WITH RESPECT TO ITSELF

 $\beta = \omega \cdot t_0$ $d\beta = \arcsin(a \cdot dt_0/c) \approx a \cdot dt_0/c$ $d\beta/dt_0 = \omega = a/c$

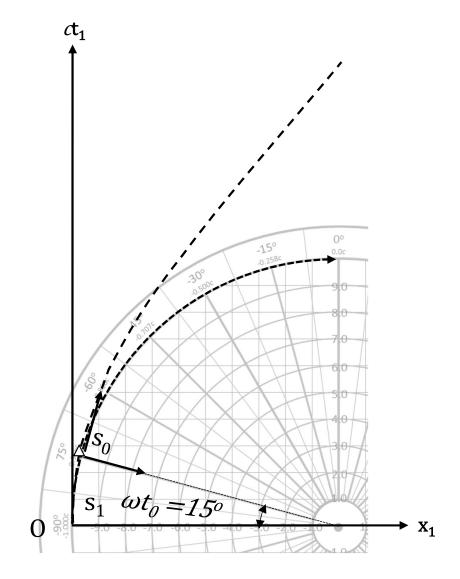
• S₀ FEELS RESULTING INERTIAL CENTRIFUGAL FORCE IN $-x_0$ DIRECTION

• FOR SMALL dt_0 , $dv \ll c$: CLASSICAL MECHANICS APPLIES: $\omega = a/c = c/\rho$ $\rho = c^2/a$ (At 1g, $\rho = 0.97$ lightyears) $F = m\rho\omega^2 = m\frac{c^2}{a}\left(\frac{a}{c}\right)^2 = ma$



S₁'s MEASUREMENT OF ACCELERATING BODY S₀

X₁


- TIME OF TRANSMISSION TO TIME OF RECEIPT: ABC
 - MEASUREMENT AT D $x_1 = \rho/\cos(\omega t_0) - \rho$ $ct_1 = \rho \cdot \sin(\omega t_0)/\cos(\omega t_0)$
- WORLDLINE IS HYPERBOLIC: TRIANGLE OBE $(x_1 + \rho)^2 - c^2 t_1^2 = \rho^2 = c^4/a_0^2$

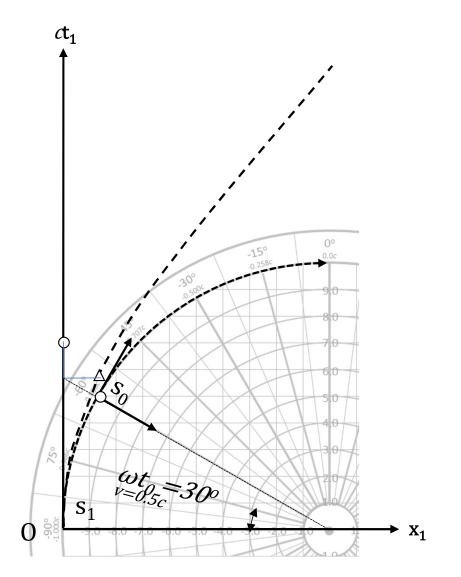
cf Gravitation, p. 166 (Misner, Thorne and Wheeler) $x^2-t^2=1/a^2$ (*c*=1 and omitted, initial offset) Done with tensors vs. trigonometry

S₁'s MEASUREMENT OF ACCELERATING BODY S₀

SMALL ANGLE APPROX CLASSICAL SOLUTION

• SMALL ANGLE APPROXIMATIONS

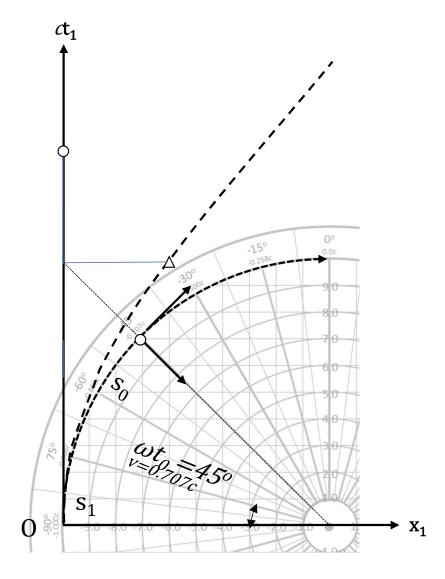
 $a_1 = a_0 \cdot \cos(\omega t_0) \cong a_0$ $ct_1 = \rho \cdot tan \ (\omega t_0) \cong ct_0$ $v = c \cdot sin(\omega t_0) \cong a_0 t_0$


• TRIG IDENTITY: $sin^2(\alpha) = (1 - cos(2\alpha))/2$

$$x_1 = \rho \frac{1 - \cos(\omega t_0)}{\cos(\omega t_0)} = \rho \frac{2 \cdot \sin^2\left(\frac{\omega t_0}{2}\right)}{\cos(\omega t_0)} \cong \frac{a_0 t_0^2}{2}$$

- FOR SMALL VALUES OF ωt_0 , $v \ll c$
 - $a_{1} \cong a_{0}$ $ct_{1} \cong ct_{0}$ $v \cong a_{0}t_{0}$ $x_{1} \cong a_{0}t_{0}^{2}/2$

S₁'s MEASUREMENT ACCELERATING BODY S₀



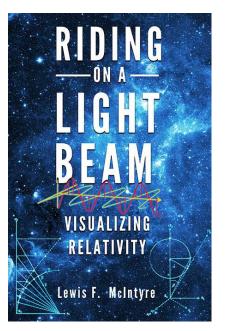
S₁'s MEASUREMENT OF ACCELERATING BODY S₀

S₁'s MEASUREMENT OF RELATIVISTIC MASS

- S_1 's MEASUREMENT OF S_0 's VELOCITY AND ACCELERATION

$$v/c = \frac{dx_1}{dt_1} = \frac{dx_1}{dt_0} \cdot \frac{dt_0}{dt_1} = \frac{\omega \rho \cdot \sec(\omega t_0) \cdot \tan(\omega t_0)}{\omega \rho \cdot \sec^2(\omega t_0)} = \sin(\omega t_0)$$
$$a_1 = \frac{d}{dt} \cdot c \cdot \sin(\omega t_0) = a_0 \cdot \cos(\omega t_0)$$

- As $\omega t_0 \rightarrow 90^\circ$, Velocity $\rightarrow c$, Acceleration $\rightarrow 0$
- MEASURE MASS:
 - Divide Constant Force $F_0=m_0 \cdot a_0$ by Observed Acceleration


$$m_1 = \frac{F_0}{a_1} = \frac{m_0 \cdot a_0}{a_0 \cdot \cos(\omega t_0)} = \frac{m_0 \cdot \frac{m_0 \cdot \alpha_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

- CONSTANT LINEAR ACCELERATION IS A CIRCULAR TRAJECTORY IN 4-DIMENSIONAL SPACE
- UNACCELERATED OBSERVER WILL SEE A HYPERBOLIC WORLDLINE ASYMPTOTIC TO *c* AS $\omega t_0 \rightarrow 90^{\circ}$
- PROOF
 - Small Angle Approximation For *v*«*c* Gives Classical Equation for Accelerated Motion
 - Diminishing Acceleration as $\omega t_0 \rightarrow 90^\circ$ Results in Measured Mass Rise
 - Validated By *Gravitation* (Misner, Thorne and Wheeler)

QUOD ERAT DEMONSTRANDUM!

(Which was to be shown!)