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Complex numbers are often introduced in 
mechanics as a tool for solving driven-

damped harmonic oscillators
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Usually this is presented as a set of rules 
with an uneasy “take the real part of the 

solution” at the end
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In this talk, I will show you a more natural 
way to organize working with complex 
numbers and driven-damped harmonic 

oscillators
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The idea for this comes from Born and Jordan’s 
Elementare Quantenmechanik (1930)
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Conventional approach (from Feynman)
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Simple Harmonic Oscillator
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Hamilton equation of motion: 𝑥̇𝑥 = 𝑝𝑝
𝑚𝑚

 and 𝑝̇𝑝 = 𝐹𝐹 = −𝑚𝑚𝜔𝜔2𝑥𝑥

Decouple  the  differential equation: Let 𝐴𝐴 = 𝛼𝛼𝛼𝛼 + 𝑝𝑝 and find α such that 𝐴̇𝐴 = 𝑐𝑐𝑐𝑐

Decouple  the  differential equation: 𝐴̇𝐴 = 𝛼𝛼𝑥̇𝑥 + 𝑝̇𝑝 = 𝛼𝛼 𝑝𝑝
𝑚𝑚
−𝑚𝑚𝜔𝜔2𝑥𝑥 implies 𝑐𝑐 = 𝛼𝛼

𝑚𝑚
 and 𝑐𝑐𝑐𝑐 = −𝑚𝑚𝜔𝜔2

Solve  for α and c: −𝑚𝑚𝜔𝜔2 = 𝛼𝛼2

𝑚𝑚
 or 𝛼𝛼2 = −𝑚𝑚2𝜔𝜔2 or 𝛼𝛼 = ±𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑐𝑐 = ±𝑖𝑖𝑖𝑖

So we have 𝐴𝐴 = 𝑝𝑝 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and 𝐴̇𝐴 = −𝑖𝑖𝑖𝑖𝑖𝑖 or 𝐴𝐴 = 𝐴𝐴0𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 with 𝐴𝐴0 = 𝑝𝑝0 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥0

The other solution is 𝐴𝐴∗ = 𝑝𝑝 + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and ̇𝐴𝐴∗ = 𝑖𝑖𝑖𝑖𝑖𝑖 or 𝐴𝐴∗ = 𝐴𝐴0∗𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 with 𝐴𝐴0∗ = 𝑝𝑝0 + 𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥0

Solve  for x: 𝑥𝑥 = −𝐴𝐴+𝐴𝐴∗

2𝑖𝑖𝑖𝑖𝑖𝑖
= 𝑥𝑥0 cos𝜔𝜔𝜔𝜔 + 𝑝𝑝0

𝑚𝑚𝑚𝑚
sin𝜔𝜔𝜔𝜔



Complex numbers are introduced naturally 
in the process of finding a first-order 

differential equation.
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Energy
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We found 𝐴𝐴 = 𝐴𝐴0𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 with 𝐴𝐴0 = 𝑝𝑝0 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥0 and 𝐴𝐴∗ = 𝐴𝐴0∗𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 with 𝐴𝐴0∗ = 𝑝𝑝0 + 𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥0 

So, we have 𝑝𝑝
2 𝑡𝑡
2𝑚𝑚

+ 1
2
𝑚𝑚𝜔𝜔2𝑥𝑥2 𝑡𝑡 = 1

2𝑚𝑚
𝐴𝐴∗ 𝑡𝑡 𝐴𝐴 𝑡𝑡 = 1

2𝑚𝑚
𝐴𝐴0 2 = 𝑝𝑝02

2𝑚𝑚
+ 1

2
𝑚𝑚𝜔𝜔2𝑥𝑥02 = constant

So, energy is conserved, automatically in this approach



Relation to quantum mechanics
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We found 𝐴𝐴 = 𝑝𝑝 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and 𝐴𝐴∗ = 𝑝𝑝 + 𝑖𝑖𝑖𝑖𝑖𝑖

If we make them operators, with  [ �𝑥𝑥, 𝑝̂𝑝] = 𝑖𝑖𝑖, then 1
2𝑚𝑚

𝐴̂𝐴†𝐴̂𝐴 + 1
2
ℏ𝜔𝜔 = �𝐻𝐻

Hence, this approach makes an easy transition to raising and lowering operators in quantum 
mechanics.



Damped Harmonic Oscillator
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Hamilton equation of motion: 𝑥̇𝑥 = 𝑝𝑝
𝑚𝑚

 and 𝑝̇𝑝 = 𝐹𝐹 = −𝑚𝑚𝑚𝑚𝑥̇𝑥 − 𝑚𝑚𝜔𝜔2𝑥𝑥

Decouple  the  differential equation: Let 𝐴𝐴 = 𝛼𝛼𝛼𝛼 + 𝑝𝑝 and find α  such that 𝐴̇𝐴 = 𝑐𝑐𝑐𝑐

Decouple  the  differential equation: 𝐴̇𝐴 = 𝛼𝛼𝑥̇𝑥 + 𝑝̇𝑝 = 𝛼𝛼 𝑝𝑝
𝑚𝑚
− 𝛾𝛾𝛾𝛾 −𝑚𝑚𝜔𝜔2𝑥𝑥 implies 𝑐𝑐 = 𝛼𝛼

𝑚𝑚
−

𝛾𝛾 and 𝑐𝑐𝑐𝑐 = −𝑚𝑚𝜔𝜔2

Solve  for α and c: −𝑚𝑚𝜔𝜔2 = 𝛼𝛼2

𝑚𝑚
− 𝛾𝛾𝛾𝛾 or 𝛼𝛼2 − 𝛾𝛾𝛾𝛾 + 𝑚𝑚2𝜔𝜔2 = 0 or 𝛼𝛼 = 𝛾𝛾

2
± 1

2
𝛾𝛾2 − 4𝑚𝑚2𝜔𝜔2 and 

𝑐𝑐 = −𝑚𝑚𝜔𝜔2

𝛼𝛼

So we have 𝐴𝐴 = 𝑝𝑝 − 𝑖𝑖𝑖𝑖𝑖𝑖 1 − 𝛾𝛾2

4𝑚𝑚2𝜔𝜔2 𝑥𝑥 and 𝐴̇𝐴 = − 𝛾𝛾
2𝑚𝑚

− 𝑖𝑖𝑖𝑖 1 − 𝛾𝛾2

4𝑚𝑚2𝜔𝜔2 𝐴𝐴

This gives the  standard damped solution. You can look at energy as well, but the  analysis is 
more  complicated.



Driven Damped Harmonic Oscillator
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Hamilton equation of motion: 𝑥̇𝑥 = 𝑝𝑝
𝑚𝑚

 and 𝑝̇𝑝 = 𝐹𝐹 = −𝑚𝑚𝑚𝑚𝑥̇𝑥 − 𝑚𝑚𝜔𝜔2𝑥𝑥 + 𝐹𝐹(𝑡𝑡)

Now we can derive  an inhomogeneous first-order differential equation. It is easy to show 
students how to solve  this via an integrating factor. But there  is not enough time to go into 
the  details in full.



For me, this is a much more natural way to 
introduce complex numbers and the added 

connection to quantum mechanics is 
another bonus 
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These ideas can be extended to Kepler orbits 
and be linked to the quantum solutions of 
hydrogen. But that is for the Fall meeting.
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