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Complex numbers are often introduced in
mechanics as a tool for solving driven-
damped harmonic oscillators
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Usually this 1s presented as a set of rules
with an uneasy “take the real part of the
solution” at the end
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In this talk, I will show you a more natural
way to organize working with complex
numbers and driven-damped harmonic

oscillators
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The idea for this comes from Born and Jordan’s
Elementare Quantenmechanik (1930)
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Conventional approach (from Feynman)

square root. The only bothersome thing 1s that we get two solutions! Thus

ay = iy/2 + \/wg /4 =iy/2 4w, (24.14)

and

ay = iy/2 — \/wg — 724 = iy/2 — w.,. (24.15)

Let us consider the first one, supposing that we had not noticed that the square
root has two possible values. Then we know that a solution for z is z; = Ae!*?,
where A is any constant whatever. Now, 1n substituting «;, because it is going to

come so many times and it takes so long to write, we shall call \/ wi —2/4 = W,y

Thus ia; = —y/2 + iw., and we get z = Ae(~7/2+&)t " or what is the same,
because of the wonderful properties of an exponential,

z, = Ae M2t (24.16)

First, we recognize this as an oscillation, an oscillation at a frequency w., which is
not exactly the frequency wy, but is rather close to wy 1f it i1s a good system.
Second, the amplitude of the oscillation 1s decreasing exponentially! If we take,

for instance, the real part of (24.16), we get

t (24.17)

T, = Ae "2 cos wt.

This 1s very much like our guessed-at solution (24.10), except that the frequency
really is w,. This is the only error, so it is the same thing—we have the right idea.
But everything i1s not all right! What 1s not all right is that there 1s another
solution.

The other solution is as, and we see that the difference i1s only that the sign
of w., 1s reversed:

zoy = Be 1/2etnt, (24.18)

What does this mean? We shall soon prove that if ; and x5 are each a possible

solution of Eq. (24.1) with F' = 0, then x; + =, 1s also a solution of the same
equation! So the general solution z 1s of the mathematical form

z = e "% (Ae™rt + Be ™rt). (24.19)
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Stmple Harmonic Oscillator

Hamilton equation of motion: x = % and p = F = —mw*x

Decouple the differential equation: Let A = ax + p and find o such that A = cA

Decouple the differential equation: 4 = ax + p = a% — mw*x implies ¢ = % and ca = —mw*
2

Solve for o and ¢: —mw? = % or a* = —m*w? or & = +imw and ¢ = +iw

So we have A = p — imwx and A = —iwA or A = Aye 't with Ay = py — imwx,

The other solution is A* = p + imwx and A* = iwA or A* = Aje't with A}, = p, + imwx,

—A+A" .
Solve for x: x = — = X COS Wt + L9 sin wt
2imaw maw
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Complex numbers are introduced naturally
in the process of finding a first-order
differential equation.
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Energy

We found 4 = Age 't with Ay = py — imwx, and A* = Aje'®! with A} = py + imwx,

2

So, we have ng) + =mw?x?(t) = —A ()A(t) = IAO\2 = —m + mezxg = constant

So, energy is conserved, automatically in this approach
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Relation to quantum mechanics

We found A = p —imwx and A = p + imw
If we make them operators, with [X, p| = ih, then %AT/T + %hw =H

Hence, this approach makes an easy transition to raising and lowering operators in quantum
mechanics.
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Damped Harmonic Oscillator

Hamilton equation of motion: x = % and p = F = —myx — mw*x

Decouple the differential equation: Let A = ax + p and find a such that A = cA

Decouple the differential equation: 4 = ax + p = a% — yp — mw*x implies ¢ = % —
y and ca = —mw?
2
Solve for o and c: —mw? = % —yaora’ —ya+m?w? =0o0ra = g + %\/y2 — 4m?w? and
mw?
C =

* 2 2

So we have A = p —imw_|1 4 2xandA=( L —iw |1 L Z)A
\ 4Mm-w 2m \ 4m-w

This gives the standard damped solution. You can look at energy as well, but the analysis 1s
more complicated.
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Driven Damped Harmonic Oscillator

Hamilton equation ofmotion: x = % and p = F = —myx — mw?*x + F(t)

Now we can derive an mhomogeneous first-order differential equation. It 1s easy to show

students how to solve this via an mtegrating factor. But there 1s not enough time to go mto
the details i full.
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For me, this 1s a much more natural way to
introduce complex numbers and the added
connection to quantum mechanics is
another bonus
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These ideas can be extended to Kepler orbits
and be linked to the guantum solutions of
hydrogen. But that 1s for the Fall meeting.
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