Chesapeake Section of AAPT

Delaware State University, Dover

PHYSICS OF AN ACCELERATING UNICYCLE

AAPT

Carl Mungan, Physics Department, U.S. Naval Academy, Annapolis MD

Spring 2024 Meeting

Saturday16 March 2024

A ball rolls along a ramp without slipping. (Neglect air drag and rolling friction throughout this talk.)

Why doesn't the ball slide instead of rolling?

<u>Answer</u>: Because of static friction. Let's see how that works by drawing a FBD.

Does $f = \mu N$ where μ is the coefficient of static friction?

Hopefully not, because otherwise the ball will be about to slip. Specifically suppose θ is small enough and μ large enough that $\tan \theta < \mu$ to avoid that.

In that case, how do we find an expression for f? <u>Answer</u>: We need it to get α so use N2L.

$$a = \frac{g \sin \theta}{1 + \gamma} \text{ and } f = \frac{\gamma M g \sin \theta}{1 + \gamma}$$

Now let $\theta = 0$ so we're on a horizontal surface.

Then f = 0! Does that mean it <u>cannot</u> roll without slipping?

<u>Answer</u>: No, but a = 0 and $\alpha = 0$ so it must be rolling at constant translational speed v and angular speed ω with $v = R\omega$. But what if we <u>want</u> to speed up or slow down the rolling?

Good question! As an example of a single-wheeled object that can increase in speed, consider a unicycle.

There must now be a forward static frictional force to produce the forward translational acceleration.

But the frictional torque then tries to angularly decelerate the wheel. Thus the driving torque τ applied by the rider must be opposite in direction and larger in magnitude than it.

FBD:

for whole system

Rider must tilt forward by φ to accelerate forward as panel (c) shows.

for wheel alone

Rider applies driving torque τ and reaction force Fto the wheel.

for rider alone

Equal & opposite Fand τ as on the wheel by N3L. Rider is accelerated forward by F_x and must tilt to counter τ .

Apply N2L for translations and rotations both to the wheel alone and to the rider alone. Use small-angle approximation for φ . (Details in upcoming paper in Physics Education.) acceleration of unicycle: $a = \frac{\tau / R}{m + (1 + \gamma)M}$ tilt angle to balance $\varphi = \frac{\tau}{g} \left[\frac{1}{mr} + \frac{1}{mR + (1 + \gamma)MR} \right]$ torques on rider: (all three are $\mu_{\min} = \frac{\tau / Rg}{m + (1 + \gamma)M}$ frictional coefficient proportional to to avoid slipping: the applied torque)

Compare theory to experiment

Variable	Value
M	6.0 kg
т	65 kg
γ	0.90
R	0.38 m
ľ	1.1 m
g	9.8 N/kg

Accelerating by tilting 15° and then returning to constant velocity:

(Ph.D. student Heiko Kabutz at Univ. of CO Boulder)

Measured acceleration in blue versus theoretical peak acceleration in green:

More detailed comparison from video analysis of tilt and displacement:

(used Tracker to measure coordinates of axle and of seat)

Comments or questions?

email: mungan@usna.edu

webpage: usna.edu/Users/physics/mungan