UANTUM MECHANICS

James Freericks, Department of Physics Georgetown University Work funded by the AFOSR and Georgetown

Spins first protocol

Stern-Gerlach analyzer

Repeated experiments

Actual demonstrations are challenging

Use quantum computers to illustrate them

They are real single quanta experiments

How to use quantum computing to illustrate important single quantum experiments for quantum instruction CSAAPT Spring Meeting 2025, April 5, 2025

Source

How to use quantum computing to illustrate important single quantum experiments for quantum instruction CSAAPT Spring Meeting 2025, April 5, 2025

Z-analyzer

How to use quantum computing to illustrate important single quantum experiments for quantum instruction CSAAPT Spring Meeting 2025, April 5, 2025

X-analyzer

r

How to use quantum computing to illustrate important single quantum experiments for quantum instruction CSAAPT Spring Meeting 2025, April 5, 2025

Z-analyzer

How to use quantum computing to illustrate important single quantum experiments for quantum instruction CSAAPT Spring Meeting 2025, April 5, 2025

Detector

$$|\uparrow\rangle_z \to \int_{-1}^1 d\cos\theta \int_0^{2\pi} d\phi$$

How to use quantum computing to illustrate important single quantum experiments for quantum instruction CSAAPT Spring Meeting 2025, April 5, 2025

Quantum circuit and state

$|\uparrow\rangle_{\theta,\phi}$ (maximally mixed state)

 $\int_{-1}^{1} d\cos\theta \int_{0}^{2\pi} d\phi |\uparrow\rangle_{\theta,\phi} \to |\uparrow\rangle_{z} \otimes |up\rangle \otimes |D_{z}\rangle$

How to use quantum computing to illustrate important single quantum experiments for quantum instruction CSAAPT Spring Meeting 2025, April 5, 2025

Quantum circuit and state

Quantum circuit and state

 $|\uparrow\rangle_{z}\otimes|up\rangle\otimes|D_{z}\rangle\rightarrow|\uparrow\rangle_{x}\otimes|right\rangle\otimes|D_{x}\rangle$

$$\begin{split} |\uparrow\rangle_x \otimes |right\rangle \otimes |D_x\rangle \\ \to \frac{1}{\sqrt{2}} (|\uparrow\rangle_z \otimes |up\rangle + |\downarrow\rangle_z \otimes |down\rangle) \otimes |D_0\rangle \end{split}$$

How to use quantum computing to illustrate important single quantum experiments for quantum instruction CSAAPT Spring Meeting 2025, April 5, 2025

Quantum circuit and state

How to use quantum computing to illustrate important single quantum experiments for quantum instruction CSAAPT Spring Meeting 2025, April 5, 2025

Quantum circuit and state

Analyzer loop

Analyzer loop

Analyzer loop with parity-check detectors

$|\uparrow\rangle_{z} \otimes |center \ beam\rangle \otimes |D_{0}\rangle$

How to use quantum computing to illustrate important single quantum experiments for quantum instruction CSAAPT Spring Meeting 2025, April 5, 2025

 $\begin{aligned} |\uparrow\rangle_{z} \otimes |center \ beam\rangle \otimes |D_{0}\rangle \\ \rightarrow \frac{1}{2}(|\uparrow\rangle_{x} \otimes |right\rangle + |\downarrow\rangle_{x} \otimes |left\rangle) \otimes |P_{1}\rangle + \frac{1}{2}(|\uparrow\rangle_{x} \otimes |left\rangle + |\downarrow\rangle_{x} \otimes |right\rangle) \otimes |P_{0}\rangle \end{aligned}$

How to use quantum computing to illustrate important single quantum experiments for quantum instruction CSAAPT Spring Meeting 2025, April 5, 2025

 $\begin{aligned} |\uparrow\rangle_{z} \otimes |center \ beam\rangle \otimes |D_{0}\rangle \\ \rightarrow \frac{1}{2} (|\uparrow\rangle_{x} \otimes |right\rangle + |\downarrow\rangle_{x} \otimes |left\rangle) \otimes |P_{1}\rangle + \frac{1}{2} (|\uparrow\rangle_{x} \otimes |left\rangle + |\downarrow\rangle_{x} \otimes |right\rangle) \otimes |P_{0}\rangle \end{aligned}$

How to use quantum computing to illustrate important single quantum experiments for quantum instruction CSAAPT Spring Meeting 2025, April 5, 2025

$$\begin{split} |\uparrow\rangle_{z} &\otimes |center \ beam \rangle \otimes |D_{0}\rangle \\ &\rightarrow \frac{1}{2} (|\uparrow\rangle_{x} \otimes |right\rangle + |\downarrow\rangle_{x} \otimes |left\rangle) \otimes |P_{1}\rangle \end{split}$$

How to use quantum computing to illustrate important single quantum experiments for quantum instruction CSAAPT Spring Meeting 2025, April 5, 2025

$\frac{1}{2}(|\uparrow\rangle_x \otimes |right\rangle + |\downarrow\rangle_x \otimes |left\rangle$

How to use quantum computing to illustrate important single quantum experiments for quantum instruction CSAAPT Spring Meeting 2025, April 5, 2025

$$(\rangle) \otimes |P_1\rangle \rightarrow \frac{1}{\sqrt{2}} |\uparrow\rangle_z \otimes |up\rangle \otimes |P_1\rangle$$

How to use quantum computing to illustrate important single quantum experiments for quantum instruction CSAAPT Spring Meeting 2025, April 5, 2025

Preserves the superposition and corrects errors

How to use quantum computing to illustrate important single quantum experiments for quantum instruction CSAAPT Spring Meeting 2025, April 5, 2025

(1) Delayed choice experiments (2) Watched versus unwatched (3) Bell experiments

How to use quantum computing to illustrate important single quantum experiments for quantum instruction CSAAPT Spring Meeting 2025, April 5, 2025

Additional experiments:

This talk is a partial summary of the undergraduate thesis work of Kyla Fraser

Two and three slit experiments

Two and three slit experiments Mach-Zehnder interferometer

Two and three slit experiments Mach-Zehnder interferometer Decoherence channels

Resources

https://quantum.georgetown.domains

https://www.edx.org/course/quantum-mechanics

https://www.edx.org/course/quantum-mechanics-for-everyone

To be released this summer: *Quantum Mechanics Done Right*

ericks

Quantum Mechanics Done Right, Volume 2

How to use quantum computing to illustrate important single quantum experiments for quantum instruction CSAAPT Spring Meeting 2025, April 5, 2025

_(q|Ô|m)

OPEN ACCESS

James Freericks

The Shortest Path from Novice to Researcher

🙆 Springer

Both will be open access for the electronic versions

