

Abstract

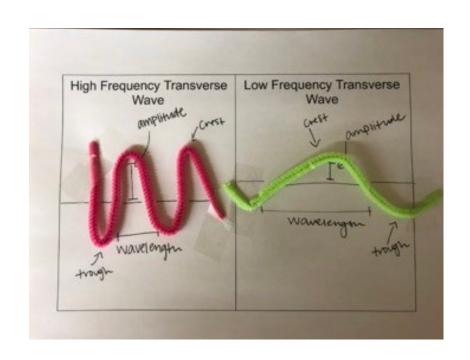
• I will present a model that illustrates the behavior of photons for K-12 students. The model of the photon I used combines both the 'wave' and 'particle' nature of light. We will incorporate a hands-on activity using pipe cleaners to represent the wave properties, while play dough will symbolize energy. We will share our experiences teaching this model and highlight some observations we made with students in grades 6 to 12. Additionally, we will demonstrate how this model utilizes the matching photon properties and discuss its limitations.

Art
Picture:

Two image/ One picture

Materials

- >Pipe cleaners
- >Hair Beads
- **≻**Tape
- ➤ Graph Paper



The simple model of the nature of a photon combines both the "waviness" and "bulletiness"

	Model Observation	Photon Property	Limitation
	The pipe cleaner has a wave shape	Photons have a waviness	 Photon waviness while similar to classical waves Instead the waviness is a description of the probability of interaction with a photon
	Hair Bead has a mass	Photons have bulletiness	 Photon bulletiness is not contained in a localized position Photon bulletiness is related to photon momentum Photons have no rest mass Photon momentum is completely defined by their energy Photon's energy is related to the frequency
	The waviness and bulletness are inversely related	Increasing the wavelength of the photon decrease the photon energy	 Student can visualize the inverse relation Wavelength = 1/energy
	Models with the same wavelength can have a different amplitude	The amplitude of photon waviness is not related to the bulletiness	 The students can choose the amplitude of the pipe cleaner. Amplitude of the waviness does nor affect th model photon's properties. Larger the amplitude direct propotion to the probability

Thank you

Acknowledgment

Walbrook Enoch free Pratt library, Baltimore MD

The Einstein – The University of Western Australia

Randallstowns High School, BCPS Randallstown MD